Matching Items (635)
Filtering by

Clear all filters

154037-Thumbnail Image.png
Description
This dissertation explores the intersection of two major developments in global

environmental governance: the vision for a Green Economy and the growing influence of non-state actors. The work draws on multi-sited thick description to analyze how relationships between the state, market, and civil society are being reoriented towards global problems. Its

This dissertation explores the intersection of two major developments in global

environmental governance: the vision for a Green Economy and the growing influence of non-state actors. The work draws on multi-sited thick description to analyze how relationships between the state, market, and civil society are being reoriented towards global problems. Its focus is a non-binding agreement between California and Chiapas to create a market in carbon offsets credits for Reducing Emissions for Deforestation and forest Degradation (REDD). The study draws on three bodies of scholarship. From the institutionalist study of global environmental politics, it uses the ideas of orchestration, civil regulation, and private entrepreneurial authority to identity emerging alignments of state and non-state actors, premised on an exchange of public authority and private expertise. From concepts borrowed from science and technology studies, it inquires into the production, certification, and contestation of knowledge. From a constitutionalist perspective, it analyzes how new forms of public law and private expertise are reshaping foundational categories such as territory, authority, and rights. The analysis begins with general research questions applied to California and Chiapas, and the international space where groups influential in these sites are also active: 1) Where are new political and legal institutions emerging, and how are they structured? 2) What role does scientific, legal, and administrative expertise play in shaping these institutions, and vice versa? And 3) How are constitutional elements of the political order being reoriented towards these new spaces and away from the exclusive domain of the nation-state? The dissertation offers a number of propositions for combining institutionalist and constructivist approaches for the study of complex global governing arrangements. It argues that this can help identify constitutional reconfigurations that are not readily apparent using either approach alone.
ContributorsMonfreda, Chad (Author) / Miller, Clark (Thesis advisor) / Hurlbut, James (Committee member) / Abbott, Kenneth (Committee member) / Arizona State University (Publisher)
Created2015
154038-Thumbnail Image.png
Description
The complexity and interconnectedness of sustainability issues has led to the joining of disciplines. This effort has been primarily within the sciences with minimal attention given to the relationship between science and art. The exclusion of art is problematic since sustainability challenges are not only scientific and technical; they are

The complexity and interconnectedness of sustainability issues has led to the joining of disciplines. This effort has been primarily within the sciences with minimal attention given to the relationship between science and art. The exclusion of art is problematic since sustainability challenges are not only scientific and technical; they are also cultural, so the arts, as shapers of culture, are critical components that warrant representation. In addition to contributing to the production of culture, arts have also been credited as catalysts for scientific breakthroughs; thus it stands to reason that understanding art-science integration will benefit sustainability’s focus on use-inspired basic research. I focus on placing art and science on equal footing to enhance understanding of how individual artists-scientists and collaborative artist-scientist teams creatively address sustainability challenges. In other words, I address the question “What does it take to develop high functioning artists-scientists or artist-scientist collaborations?”

To answer this question, I used a multipronged approach to triangulate a richer understanding of what art-science synthesis offers sustainability and how it functions. First, I performed an historical analysis of a maladapted wilderness aesthetic and turned to the work Aldo Leopold – an exemplar of an artist-scientist – for a new sustainability aesthetic. Then, I engaged in an individual contemporary art practice, culminating in a gallery exhibit, which displayed ecologically-informed work from a three year study of my backyard. Finally, I conducted small group research of artist-scientist teams tasked with developing interpretive signage for the Tres Rios wetland site. For this final element, I collected survey, wearable sensor, and ethnographic data.

Through this composite research, I found that successful art-science practices require significant energy and time investment. Although art-science is most intensive in an individual practice where the person must become “fluent” in two disciplines, it is still challenging in a group setting where members must become “conversational” in each other’s work. However, successful art-science syntheses appear to result in improved communication skills, better problem articulation, more creative problem solving, and the questioning of personal and disciplinary mental models. Thus, the outcomes of such syntheses warrant the effort required at both the individual and collaborative level.
ContributorsCardenas, Edgar (Author) / Klett, Mark (Thesis advisor) / Minteer, Ben A (Thesis advisor) / Hackett, Edward J (Committee member) / Childers, Dan (Committee member) / Arizona State University (Publisher)
Created2015
154048-Thumbnail Image.png
Description
Vegetative filter strips (VFS) are an effective methodology used for storm water management particularly for large urban parking lots. An optimization model for the design of vegetative filter strips that minimizes the amount of land required for stormwater management using the VFS is developed in this study. The

Vegetative filter strips (VFS) are an effective methodology used for storm water management particularly for large urban parking lots. An optimization model for the design of vegetative filter strips that minimizes the amount of land required for stormwater management using the VFS is developed in this study. The resulting optimization model is based upon the kinematic wave equation for overland sheet flow along with equations defining the cumulative infiltration and infiltration rate.

In addition to the stormwater management function, Vegetative filter strips (VFS) are effective mechanisms for control of sediment flow and soil erosion from agricultural and urban lands. Erosion is a major problem associated with areas subjected to high runoffs or steep slopes across the globe. In order to effect economy in the design of grass filter strips as a mechanism for sediment control & stormwater management, an optimization model is required that minimizes the land requirements for the VFS. The optimization model presented in this study includes an intricate system of equations including the equations defining the sheet flow on the paved and grassed area combined with the equations defining the sediment transport over the vegetative filter strip using a non-linear programming optimization model. In this study, the optimization model has been applied using a sensitivity analysis of parameters such as different soil types, rainfall characteristics etc., performed to validate the model
ContributorsKhatavkar, Puneet N (Author) / Mays, Larry W. (Thesis advisor) / Fox, Peter (Committee member) / Wang, Zhihua (Committee member) / Mascaro, Giuseppe (Committee member) / Arizona State University (Publisher)
Created2015
154245-Thumbnail Image.png
Description
Energy poverty is pervasive in sub-Saharan Africa. Nigeria, located in sub-Saharan West Africa, is the world's seventh largest oil exporting country and is a resource-rich nation. It however experiences the same levels of energy poverty as most of its neighboring countries. Attributing this paradox only to corruption or the "Dutch

Energy poverty is pervasive in sub-Saharan Africa. Nigeria, located in sub-Saharan West Africa, is the world's seventh largest oil exporting country and is a resource-rich nation. It however experiences the same levels of energy poverty as most of its neighboring countries. Attributing this paradox only to corruption or the "Dutch Disease", where one sector booms at the expense of other sectors of the economy, is simplistic and enervates attempts at reform. In addition, data on energy consumption is aggregated at the national level via estimates, disaggregated data is virtually non-existent. Finally, the wave of decentralization of vertically integrated national utilities sweeping the developing world has caught on in sub-Saharan Africa. However, little is known of the economic and social implications of these transitions within the unique socio-technical system of the region's electricity sector, especially as it applies to energy poverty. This dissertation proposes a complex systems approach to measuring and mitigating energy poverty in Nigeria due to its multi-dimensional nature. This is done via a three-fold approach: the first section of the study delves into causation by examining the governance institutions that create and perpetuate energy poverty; the next section proposes a context-specific minimum energy poverty line based on field data collected on energy consumption; and the paper concludes with an indicator-based transition management framework encompassing institutional, economic, social, and environmental themes of sustainable transition within the electricity sector. This work contributes to intellectual discourse on systems-based mitigation strategies for energy poverty that are widely applicable within the sub-Saharan region, as well as adds to the knowledge-base of decision-support tools for addressing energy poverty in its complexity.
ContributorsChidebell Emordi, Chukwunonso (Author) / York, Abigail (Thesis advisor) / Pasqualetti, Martin (Committee member) / Golub, Aaron (Committee member) / Arizona State University (Publisher)
Created2015
154258-Thumbnail Image.png
Description
Human migration is not a new phenomenon but present and future human-induced environmental changes pose new questions and challenges. In the coming years, both rapid and slow onset environmental changes will drive many people to migrate in search of improved security and livelihoods. Anthropogenic climate change in particular

Human migration is not a new phenomenon but present and future human-induced environmental changes pose new questions and challenges. In the coming years, both rapid and slow onset environmental changes will drive many people to migrate in search of improved security and livelihoods. Anthropogenic climate change in particular requires international institutions to determine how to best meet the needs of present and future migrants. I analyzed interviews with experts to identify institutional gaps for managing environmental migration and what potential, if any, the Warsaw International Mechanism for loss and damage associated with climate change impacts (WIM) might contribute to filling these gaps. Using these interviews and literature, I propose a framework to assess the capacity of existing institutions to address the breadth of migrant needs. Then, I identify gaps and challenges in order to illuminate strategies for future solutions.
ContributorsThompson-Ballentine, Katherine (Author) / Klinsky, Sonja (Thesis advisor) / Hirt, Paul (Committee member) / Chhetri, Netra (Committee member) / Arizona State University (Publisher)
Created2015
154278-Thumbnail Image.png
Description
Ion exchange sorbents embedded with metal oxide nanoparticles can have high affinity and high capacity to simultaneously remove multiple oxygenated anion contaminants from drinking water. This research pursued answering the question, “Can synthesis methods of nano-composite sorbents be improved to increase sustainability and feasibility to remove hexavalent chromium and arsenic

Ion exchange sorbents embedded with metal oxide nanoparticles can have high affinity and high capacity to simultaneously remove multiple oxygenated anion contaminants from drinking water. This research pursued answering the question, “Can synthesis methods of nano-composite sorbents be improved to increase sustainability and feasibility to remove hexavalent chromium and arsenic simultaneously from groundwater compared to existing sorbents?” Preliminary nano-composite sorbents outperformed existing sorbents in equilibrium tests, but struggled in packed bed applications and at low influent concentrations. The synthesis process was then tailored for weak base anion exchange (WBAX) while comparing titanium dioxide against iron hydroxide nanoparticles (Ti-WBAX and Fe-WBAX, respectively). Increasing metal precursor concentration increased the metal content of the created sorbents, but pollutant removal performance and usable surface area declined due to pore blockage and nanoparticle agglomeration. An acid-post rinse was required for Fe-WBAX to restore chromium removal capacity. Anticipatory life cycle assessment identified critical design constraints to improve environmental and human health performance like minimizing oven heating time, improving pollutant removal capacity, and efficiently reusing metal precursor solution. The life cycle environmental impact of Ti-WBAX was lower than Fe-WBAX as well as a mixed bed of WBAX and granular ferric hydroxide for all studied categories. A separate life cycle assessment found the total number of cancer and non-cancer cases prevented by drinking safer water outweighed those created by manufacture and use of water treatment materials and energy. However, treatment relocated who bore the health risk, concentrated it in a sub-population, and changed the primary manifestation from cancer to non-cancer disease. This tradeoff was partially mitigated by avoiding use of pH control chemicals. When properly synthesized, Fe-WBAX and Ti-WBAX sorbents maintained chromium removal capacity while significantly increasing arsenic removal capacity compared to the parent resin. The hybrid sorbent performance was demonstrated in packed beds using a challenging water matrix and low pollutant influent conditions. Breakthrough curves hint that the hexavalent chromium is removed by anion exchange and the arsenic is removed by metal oxide sorption. Overall, the hybrid nano-sorbent synthesis methods increased sustainability, improved sorbent characteristics, and increased simultaneous removal of chromium and arsenic for drinking water.
ContributorsGifford, James McKay (Author) / Westerhoff, Paul (Thesis advisor) / Hristovski, Kiril (Thesis advisor) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2016
154315-Thumbnail Image.png
Description

Three dilemmas plague governance of scientific research and technological

innovation: the dilemma of orientation, the dilemma of legitimacy, and the dilemma of control. The dilemma of orientation risks innovation heedless of long-term implications. The dilemma of legitimacy grapples with delegation of authority in democracies, often at the expense of broader public

Three dilemmas plague governance of scientific research and technological

innovation: the dilemma of orientation, the dilemma of legitimacy, and the dilemma of control. The dilemma of orientation risks innovation heedless of long-term implications. The dilemma of legitimacy grapples with delegation of authority in democracies, often at the expense of broader public interest. The dilemma of control poses that the undesirable implications of new technologies are hard to grasp, yet once grasped, all too difficult to remedy. That humanity has innovated itself into the sustainability crisis is a prime manifestation of these dilemmas.

Responsible innovation (RI), with foci on anticipation, inclusion, reflection, coordination, and adaptation, aims to mitigate dilemmas of orientation, legitimacy, and control. The aspiration of RI is to bend the processes of technology development toward more just, sustainable, and societally desirable outcomes. Despite the potential for fruitful interaction across RI’s constitutive domains—sustainability science and social studies of science and technology—most sustainability scientists under-theorize the sociopolitical dimensions of technological systems and most science and technology scholars hesitate to take a normative, solutions-oriented stance. Efforts to advance RI, although notable, entail one-off projects that do not lend themselves to comparative analysis for learning.

In this dissertation, I offer an intervention research framework to aid systematic study of intentional programs of change to advance responsible innovation. Two empirical studies demonstrate the framework in application. An evaluation of Science Outside the Lab presents a program to help early-career scientists and engineers understand the complexities of science policy. An evaluation of a Community Engagement Workshop presents a program to help engineers better look beyond technology, listen to and learn from people, and empower communities. Each program is efficacious in helping scientists and engineers more thoughtfully engage with mediators of science and technology governance dilemmas: Science Outside the Lab in revealing the dilemmas of orientation and legitimacy; Community Engagement Workshop in offering reflexive and inclusive approaches to control. As part of a larger intervention research portfolio, these and other projects hold promise for aiding governance of science and technology through responsible innovation.

ContributorsBernstein, Michael J. (Author) / Wiek, Arnim (Thesis advisor) / Wetmore, Jameson M. (Thesis advisor) / Grimm, Nancy (Committee member) / Anderies, John M (Committee member) / Arizona State University (Publisher)
Created2016
154205-Thumbnail Image.png
Description
Microbial Electrochemical Cell (MXC) technology harnesses the power stored in wastewater by using anode respiring bacteria (ARB) as a biofilm catalyst to convert the energy stored in waste into hydrogen or electricity. ARB, or exoelectrogens, are able to convert the chemical energy stored in wastes into electrical energy by transporting

Microbial Electrochemical Cell (MXC) technology harnesses the power stored in wastewater by using anode respiring bacteria (ARB) as a biofilm catalyst to convert the energy stored in waste into hydrogen or electricity. ARB, or exoelectrogens, are able to convert the chemical energy stored in wastes into electrical energy by transporting electrons extracellularly and then transferring them to an electrode. If MXC technology is to be feasible for ‘real world’ applications, it is essential that diverse ARB are discovered and their unique physiologies elucidated- ones which are capable of consuming a broad spectrum of wastes from different contaminated water sources.

This dissertation examines the use of Gram-positive thermophilic (60 ◦C) ARB in MXCs since very little is known regarding the behavior of these microorganisms in this setting. Here, we begin with the draft sequence of the Thermincola ferriacetica genome and reveal the presence of 35 multiheme c-type cytochromes. In addition, we employ electrochemical techniques including cyclic voltammetry (CV) and chronoamperometry (CA) to gain insight into the presence of multiple pathways for extracellular electron transport (EET) and current production (j) limitations in T. ferriacetica biofilms.

Next, Thermoanaerobacter pseudethanolicus, a fermentative ARB, is investigated for its ability to ferment pentose and hexose sugars prior to using its fermentation products, including acetate and lactate, for current production in an MXC. Using CA, current production is tracked over time with the generation and consumption of fermentation products. Using CV, the midpoint potential (EKA) of the T. pseudethanolicus EET pathway is revealed.



Lastly, a cellulolytic microbial consortium was employed for the purpose ofassessing the feasibility of using thermophilic MXCs for the conversion of solid waste into current production. Here, a highly enriched consortium of bacteria, predominately from the Firmicutes phylum, is capable of generating current from solid cellulosic materials.
ContributorsLusk, Bradley (Author) / Torres, César I (Thesis advisor) / Rittmann, Bruce E. (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2015
154208-Thumbnail Image.png
Description
Many scholars agree that heritage tourism has grown in recent years. It has become a unique way for communities to diversify their economies while preserving local culture and heritage. One unique way communities are doing this is through heritage festivals. These festivals have a significant impact on

Many scholars agree that heritage tourism has grown in recent years. It has become a unique way for communities to diversify their economies while preserving local culture and heritage. One unique way communities are doing this is through heritage festivals. These festivals have a significant impact on local communities and are multifaceted as they do not just provide economic impact to host communities, but also positive or potentially negative social and environmental impacts.

In recent years, a more sustainable approach integrating economic, socio-cultural and environmental impacts has been suggested when analyzing short term event such as festivals. It is important for event managers and scholars alike to understand these potential impacts as heritage festivals continue to evolve and prevalent part of heritage tourism.

This study aims to measure and quantify the economic, social and environmental impacts of two heritage festivals – Gold Rush Days and Bluegrass Festival, closely following Andersson and Lundberg’s 2013 study on commensurability and sustainability utilizing willingness to pay (WTP) and willingness to accept (WTA). Both are annual heritage festivals and take place in Wickenburg, Arizona. Primary data collection methods are used to gather information regarding economic and social impacts. Paper questionnaires distributed via stratified random sample to festival attendees and town residents is the survey instrument used in the study. To determine environmental impacts, secondary data in the form of stakeholder interviews are conducted.

Findings suggest a positive economic impact to the town of Wickenburg. Visitor expenditures, retained local spending and direct, indirect, and induced impacts are presented. Social impacts show a generally positive attitude toward the festival from a resident perspective. Environmental impacts show that collaboration among town stakeholders is needed to better determine festival environmental impact as no formal measures of impact are currently being recorded. Further empirical research is needed to better determine these impacts.
ContributorsScott, Karla (Author) / Chhabra, Deepak (Thesis advisor) / Timothy, Dallen (Thesis advisor) / Tetreault, Colin (Committee member) / Larsen, Dale (Committee member) / Arizona State University (Publisher)
Created2015
157809-Thumbnail Image.png
Description
The intent of this study was to identify the most viable among a proposive sample of emerging sustainable construction technologies with respect to the Twin Cities Metropolitan Geographic Area. With space heating and space cooling accounting for such a significant portion of energy consumption in Twin Cities homes, a representative

The intent of this study was to identify the most viable among a proposive sample of emerging sustainable construction technologies with respect to the Twin Cities Metropolitan Geographic Area. With space heating and space cooling accounting for such a significant portion of energy consumption in Twin Cities homes, a representative sample of homes was analyzed for annual heating and cooling loads. For each home a series of heating, ventilation, air conditioning (HVAC) and envelope equipment was modeled in order to provide data for various sustainable home construction technologies. The result was a specific amount of energy savings from baseline construction methods for each sustainable technology. The study found that integrated geothermal heat pump and radiant conditioning systems have a far greater impact on energy savings than the construction methods evaluated. Nevertheless, insulated concrete forms provided the greatest energy savings within the proposive set of construction methods. The greatest amount of space conditioning energy savings of all configurations tested was 73.48% using an integrated geothermal heat pump and radiant conditioning system, structural insulated panel wall construction, aerosol air infiltration prevention, and insulated concrete form basement construction. The results of the study were used to determine areas for further research and to provide awareness within the Twin Cities construction enterprise to determine the most viable technologies that contractors, municipalities, and citizens should prioritize moving forward.
ContributorsMcKilligan, Ryan (Author) / Sullivan, Kenneth (Thesis advisor) / Stone, Brian (Committee member) / Smithwick, Jake (Committee member) / Arizona State University (Publisher)
Created2019