Matching Items (9)
Filtering by

Clear all filters

135209-Thumbnail Image.png
Description
Building construction, design and maintenance is a sector of engineering where improved efficiency will have immense impacts on resource consumption and environmental health. This research closely examines the Leadership in Environment and Energy Design (LEED) rating system and the International Green Construction Code (IgCC). The IgCC is a model code,

Building construction, design and maintenance is a sector of engineering where improved efficiency will have immense impacts on resource consumption and environmental health. This research closely examines the Leadership in Environment and Energy Design (LEED) rating system and the International Green Construction Code (IgCC). The IgCC is a model code, written with the same structure as many building codes. It is a standard that can be enforced if a city's government decides to adopt it. When IgCC is enforced, the buildings either meet all of the requirements set forth in the document or it fails to meet the code standards. The LEED Rating System, on the other hand, is not a building code. LEED certified buildings are built according to the standards of their local jurisdiction and in addition to that, building owners can chose to pursue a LEED certification. This is a rating system that awards points based on the sustainable measures achieved by a building. A comparison of these green building systems highlights their accomplishments in terms of reduced electricity usage, usage of low-impact materials, indoor environmental quality and other innovative features. It was determined that in general IgCC is more holistic, stringent approach to green building. At the same time the LEED rating system a wider variety of green building options. In addition, building data from LEED certified buildings was complied and analyzed to understand important trends. Both of these methods are progressing towards low-impact, efficient infrastructure and a side-by-side comparison, as done in this research, shed light on the strengths and weaknesses of each method, allowing for future improvements.
ContributorsCampbell, Kaleigh Ruth (Author) / Chong, Oswald (Thesis director) / Parrish, Kristen (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136539-Thumbnail Image.png
Description
Engineering education has long sought to incorporate greater diversity into engineering programs to prepare the profession to meet the engineering challenges of society. Increasing or retaining the conative diversity of engineering programs may help extend other kinds of diversity in the profession as well (Marburger, 2004). One measure of conation

Engineering education has long sought to incorporate greater diversity into engineering programs to prepare the profession to meet the engineering challenges of society. Increasing or retaining the conative diversity of engineering programs may help extend other kinds of diversity in the profession as well (Marburger, 2004). One measure of conation is the Kolbe ATM index.
Kolbe ATM is an index developed by Kathy Kolbe to measure the conative traits on an individual. The index assigns each individual a value in four categories, or Action Modes, that indicates their level of insistence on a scale of 1 to 10 in that Action Mode (Kolbe, 2004). The four Action Modes are:

• Fact Finder – handling of information or facts
• Follow Thru – need to pattern or organize
• Quick Start – management of risk or uncertainty
• Implementor – interaction with space or tangibles

The Kolbe A (TM) index assigns each individual a value that indicates their level of insistence with 1-3 representing resistant, preventing problems in a particular Action Mode; 4-6 indicating accommodation, flexibility in a particular Action Mode; and 7-10 indicating insistence in an Action Mode, initiating solutions in that Action Mode (Kolbe, 2004).

To promote retention of conative diversity, this study examines conative diversity in two engineering student populations, a predominately freshmen population at Chandler Gilbert Community College and a predominately junior population at Arizona State University. Students in both population took a survey that asked them to self-report their GPA, satisfaction with required courses in their major, Kolbe ATM conative index, and how much their conative traits help them in each of the classes on the survey. The classes in the survey included two junior level classes at ASU, Engineering Business Practices and Structural Analysis; as well as four freshmen engineering classes, Physics Lecture, Physics Lab, English Composition, and Calculus I.

This study finds that student satisfaction has no meaningful correlation with student GPA.
The study also finds that engineering programs have a dearth of resistant Fact Finders from the freshmen level on and losses resistant Follow Thrus and insistent Quick Starts as time progresses. Students whose conative indices align well with the structure of the engineering program tend to consider their conative traits helpful to them in their engineering studies. Students whose conative indices misalign with the structure of the program report that they consider their strengths less helpful to them in their engineering studies.
This study recommends further research into the relationship between satisfaction with major and conation and into perceived helpfulness of conative traits by students. Educators should continue to use Kolbe A (TM) in the classroom and perform further research on the impacts of conation on diversity in engineering programs.
ContributorsSmith, Logan Farren (Author) / Seager, Thomas P. (Thesis director) / Adams, Elizabeth A. (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2015-05
136692-Thumbnail Image.png
Description
One of the salient challenges of sustainability is the Tragedy of the Commons, where individuals acting independently and rationally deplete a common resource despite their understanding that it is not in the group's long term best interest to do so. Hardin presents this dilemma as nearly intractable and solvable only

One of the salient challenges of sustainability is the Tragedy of the Commons, where individuals acting independently and rationally deplete a common resource despite their understanding that it is not in the group's long term best interest to do so. Hardin presents this dilemma as nearly intractable and solvable only by drastic, government-mandated social reforms, while Ostrom's empirical work demonstrates that community-scale collaboration can circumvent tragedy without any elaborate outside intervention. Though more optimistic, Ostrom's work provides scant insight into larger-scale dilemmas such as climate change. Consequently, it remains unclear if the sustainable management of global resources is possible without significant government mediation. To investigate, we conducted two game theoretic experiments that challenged students in different countries to collaborate digitally and manage a hypothetical common resource. One experiment involved students attending Arizona State University and the Rochester Institute of Technology in the US and Mountains of the Moon University in Uganda, while the other included students at Arizona State and the Management Development Institute in India. In both experiments, students were randomly assigned to one of three production roles: Luxury, Intermediate, and Subsistence. Students then made individual decisions about how many units of goods they wished to produce up to a set maximum per production class. Luxury players gain the most profit (i.e. grade points) per unit produced, but they also emit the most externalities, or social costs, which directly subtract from the profit of everybody else in the game; Intermediate players produce a medium amount of profit and externalities per unit, and Subsistence players produce a low amount of profit and externalities per unit. Variables influencing and/or inhibiting collaboration were studied using pre- and post-game surveys. This research sought to answer three questions: 1) Are international groups capable of self-organizing in a way that promotes sustainable resource management?, 2) What are the key factors that inhibit or foster collective action among international groups?, and 3) How well do Hardin's theories and Ostrom's empirical models predict the observed behavior of students in the game? The results of gameplay suggest that international cooperation is possible, though likely sub-optimal. Statistical analysis of survey data revealed that heterogeneity and levels of trust significantly influenced game behavior. Specific traits of heterogeneity among students found to be significant were income, education, assigned production role, number of people in one's household, college class, college major, and military service. Additionally, it was found that Ostrom's collective action framework was a better predictor of game outcome than Hardin's theories. Overall, this research lends credence to the plausibility of international cooperation in tragedy of the commons scenarios such as climate change, though much work remains to be done.
ContributorsStanton, Albert Grayson (Author) / Clark, Susan Spierre (Thesis director) / Seager, Thomas (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2014-12
137293-Thumbnail Image.png
Description
It is the intent of this research to determine the feasibility of utilizing industrial byproducts in cementitious systems in lieu of Portland Cement to reduce global CO2 emissions. Class C and Class F Fly Ash (CFA and FFA, respectively) derived from industrial coal combustion were selected as the replacement materials

It is the intent of this research to determine the feasibility of utilizing industrial byproducts in cementitious systems in lieu of Portland Cement to reduce global CO2 emissions. Class C and Class F Fly Ash (CFA and FFA, respectively) derived from industrial coal combustion were selected as the replacement materials for this study. Sodium sulfate and calcium oxide were used as activators. In Part 1 of this study, focus was placed on high volume replacement of OPC using sodium sulfate as the activator. Despite improvements in heat generation for both CFA and FFA systems in the presence of sulfate, sodium sulfate was found to have adverse effects on the compressive strength of CFA mortars. In the CFA mixes, strength improved significantly with sulfate addition, but began to decrease in strength around 14 days due to expansive ettringite formation. Conversely, the addition of sulfate led to improved strength for FFA mixes such that the 28 day strength was comparable to that of the CFA mixes with no observable strength loss. Maximum compressive strengths achieved for the high volume replacement mixes was around 40 MPa, which is considerably lower than the baseline OPC mix used for comparison. In Part 2 of the study, temperature dependency and calcium oxide addition were studied for sodium sulfate activated systems composed of 100% Class F fly ash. In the presence of sulfate, added calcium increased reactivity and compressive strength at early ages, particularly at elevated temperatures. It is believed that sulfate and calcium react with alumina from fly ash to form ettringite, while heat overcomes the activation energy barrier of fly ash. The greatest strengths were obtained for mixes containing the maximum allowed quantity of calcium oxide (5%) and sodium sulfate (3%), and were around 12 MPa. This is a very low compressive strength relative to OPC and would therefore be an inadequate substitute for OPC needs.
Created2014-05
134597-Thumbnail Image.png
Description
Hospitals constitute 9 percent of commercial energy consumption in the U.S. annually, though they only make up 2 percent of the U.S. commercial floor space. Consuming an average of 259,000 Btu per square foot, U.S. hospitals spend about 8.3 billion dollars on energy every year. Utilizing collaborative delivery method for

Hospitals constitute 9 percent of commercial energy consumption in the U.S. annually, though they only make up 2 percent of the U.S. commercial floor space. Consuming an average of 259,000 Btu per square foot, U.S. hospitals spend about 8.3 billion dollars on energy every year. Utilizing collaborative delivery method for hospital construction can effectively save healthcare business owners thousands of dollars while reducing construction time and resulting in a better product: a building that has fewer operational deficiencies and requires less maintenance. Healthcare systems are integrated by nature, and are rich in technical complexity to meet the needs of their various patients. In addition to being technologically and energy intensive, hospitals must meet health regulations while maintaining human comfort. The interdisciplinary nature of hospitals suggests that multiple perspectives would be valuable in optimizing the building design. Integrated project delivery provides a means to reaching the optimal design by emphasizing group collaboration and expertise of the architect, engineer, owner, builder, and hospital staff. In previous studies, IPD has proven to be particularly beneficial when it comes to highly complex projects, such as hospitals. To assess the effects of a high level of team collaboration in the delivery of a hospital, case studies were prepared on several hospitals that have been built in the past decade. The case studies each utilized some form of a collaborative delivery method, and each were successful in saving and/or redirecting time and money to other building components, achieving various certifications, recognitions, and awards, and satisfying the client. The purpose of this research is to determine key strategies in the construction of healthcare facilities that allow for quicker construction, greater monetary savings, and improved operational efficiency. This research aims to communicate the value of both "green building" and a high level of team collaboration in the hospital-building process.
ContributorsHansen, Hannah Elizabeth (Author) / Parrish, Kristen (Thesis director) / Bryan, Harvey (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134474-Thumbnail Image.png
Description
The problem is that children in developing countries are doing our dirty work. Electronic waste that end up in landfills in these developing countries pose a danger to the children extracting metals that are then resold in local markets. The dumping of solar panels in these landfills is sometimes the

The problem is that children in developing countries are doing our dirty work. Electronic waste that end up in landfills in these developing countries pose a danger to the children extracting metals that are then resold in local markets. The dumping of solar panels in these landfills is sometimes the only alternative for some manufactures because there is no viable option for silicon wafers. Solar panel installations started to peak in the early 1990's . With the lifespan of a solar panel being 25 years, recycling these panel is not a priority task in government policies. First Solar is currently the only company in the United States that executes the full recycling process. However, there is an environmental hotspot and an energy intensity phase identified in their process. The second stage in First Solar's recycling method consist of hammering and shredding the solar panel to reduce the surface area to then move on the chemical path stage. This stage currently uses 1.1 kWh for a meter by meter solar cell. A thermal processing method was explored and found to be the most environmentally conscious chose in terms of emissions and energy cost. The thermal method uses a conventional furnace to burn away the EVA, leaving the internal components of the cell intact and ready for the remaining process of recycling. SLICE method aims to introduce an industry tailored, low energy cost process, that initiates a solar panel recycling infrastructure in the United States. The recycling infrastructure is needed to sustain the exponential growth of solar panels and avoid third party recycling to developing countries. This new method transitions from lab tested batch processes to a continuous process.
ContributorsMartinez, Mariana (Co-author) / Grayson, Madison (Co-author) / Seager, Thomas (Thesis director) / Ravikumar, Dwarak (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134875-Thumbnail Image.png
Description
Productivity in the construction industry is an essential measure of production efficiency and economic progress, quantified by craft laborers' time spent directly adding value to a project. In order to better understand craft labor productivity as an aspect of lean construction, an activity analysis was conducted at the Arizona State

Productivity in the construction industry is an essential measure of production efficiency and economic progress, quantified by craft laborers' time spent directly adding value to a project. In order to better understand craft labor productivity as an aspect of lean construction, an activity analysis was conducted at the Arizona State University Palo Verde Main engineering dormitory construction site in December of 2016. The objective of this analysis on craft labor productivity in construction projects was to gather data regarding the efficiency of craft labor workers, make conclusions about the effects of time of day and other site-specific factors on labor productivity, as well as suggest improvements to implement in the construction process. Analysis suggests that supporting tasks, such as traveling or materials handling, constitute the majority of craft labors' efforts on the job site with the highest percentages occurring at the beginning and end of the work day. Direct work and delays were approximately equal at about 20% each hour with the highest peak occurring at lunchtime between 10:00 am and 11:00 am. The top suggestion to improve construction productivity would be to perform an extensive site utilization analysis due to the confined nature of this job site. Despite the limitations of an activity analysis to provide a complete prospective of all the factors that can affect craft labor productivity as well as the small number of days of data acquisition, this analysis provides a basic overview of the productivity at the Palo Verde Main construction site. Through this research, construction managers can more effectively generate site plans and schedules to increase labor productivity.
ContributorsFord, Emily Lucile (Author) / Grau, David (Thesis director) / Chong, Oswald (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134978-Thumbnail Image.png
Description
As inhabitants of a desert, a sustainable water source has always been and will continue to be a crucial component in developing the cities Arizonans call home. Phoenix and the surrounding municipalities make up a large metropolitan area that continues to grow in spatial size and population. However, as climate

As inhabitants of a desert, a sustainable water source has always been and will continue to be a crucial component in developing the cities Arizonans call home. Phoenix and the surrounding municipalities make up a large metropolitan area that continues to grow in spatial size and population. However, as climate change becomes more of an evident challenge, Arizona is forced to plan and make decisions regarding its ability to safely and efficiently maintain its livelihood and/or growth. With the effects of climate change in mind, Arizona will need to continue to innovatively and proactively address issues of water management and the effects of urban heat island (UHI). The objective of this thesis was to study the socioeconomic impacts of four extreme scenarios of the future Phoenix metropolitan area. Each of the scenarios showcased a different hypothetical extreme and uniquely impacted factors related to water management and UHI. The four scenarios were a green city, desert city, expanded city into desert land, and expanded city into agricultural land. These four scenarios were designed to emphasize different aspects of the urban water-energy-population nexus, as the future of the Phoenix metropolitan area is dynamic. Primarily, the Green City and Desert City served as contrasting viewpoints on UHI and water sustainability. The Expanded Cities showed the influence of population growth and land use on water sustainability. The socioeconomic impacts of the four scenarios were then analyzed. The quantitative data of the report was completed using the online user interface of WaterSim 5.0 (a program created by the Decision Center for a Desert City (DCDC) at Arizona State University). The different scenarios were modeled in the program by adjusting various demand and supply oriented factors. The qualitative portion as well as additional quantitative data was acquired through an extensive literature review. It was found that changing land use has direct water use implications; agricultural land overtaken for municipal uses can sustain a population for longer. Though, removing agricultural lands has both social and economic implications, and can actually cause the elimination of an emergency source. Moreover, it was found that outdoor water use and reclaimed wastewater can impact water sustainability. Practices that decrease outdoor water use and increase wastewater reclamation are currently occurring; however, these practices could be augmented. Both practices require changes in the publics' opinions on water use, nevertheless, the technology and policy exists and can be intensified to become more water sustainable. While the scenarios studied were hypothetical cases of the future of the Phoenix metropolitan area, they identified important circumscribing measures and practices that influence the Valley's water resources.
ContributorsVon Gnechten, Rachel Marie (Author) / Wang, Zhihua (Thesis director) / White, Dave (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135977-Thumbnail Image.png
Description
This paper features analysis of interdisciplinary collaboration, based on the results from the Kolbe A™ Index of students in the Nano Ethics at Play (NEAP) class, a four week course in Spring 2015. The Kolbe A™ is a system which describes the Conative Strengths of each student, or their

This paper features analysis of interdisciplinary collaboration, based on the results from the Kolbe A™ Index of students in the Nano Ethics at Play (NEAP) class, a four week course in Spring 2015. The Kolbe A™ is a system which describes the Conative Strengths of each student, or their natural drive and instinct. NEAP utilized the LEGO® SERIOUS PLAY® (LSP) method, which uses abstract LEGO models to describe answers to a proposed question in school or work environments. The models could be described piece by piece to provide clear explanations without allowing disciplinary jargon, which is why the class contained students from eleven different majors (Engineering (Civil, Biomedical, & Electrical), Business (Marketing & Supply Chain Management), Architectural Studies, Sustainability, Anthropology, Communications, Philosophy, & Psychology).

The proposed hypotheses was based on the four different Kolbe A™ strengths, or Action Modes: Fact Finder, Follow Through, Quick Start, and Implementor. Hypotheses were made about class participation and official class twitter use, using #ASUsp, for each Kolbe type. The results proved these hypotheses incorrect, indicating a lack of correlation between Kolbe A™ types and playing. The report also includes qualitative results such as Twitter Keywords and a Sentiment calculation for each week of the course. The class had many positive outcomes, including growth in the ability to collaborate by students, further understanding of how to integrate Twitter use into the classroom, and more knowledge about the effectiveness of LSP.
Created2015-12