Matching Items (16)
Filtering by
- All Subjects: Sustainability
- Member of: Theses and Dissertations

Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared to traditional coal-based power generation processes resulting in a reduction of greenhouse gas emissions. The goal of this project was to analyze the performance of a new SNDC ceramic-carbonate dual-phase membrane for CO2 separation. The chemical formula for the SNDC-carbonate membrane was Sm0.075Nd0.075Ce0.85O1.925. This project also focused on the use of this membrane for pre-combustion CO2 capture coupled with a water gas shift (WGS) reaction for a 1000 MW power plant. The addition of this membrane to the traditional IGCC process provides a purer H2 stream for combustion in the gas turbine and results in lower operating costs and increased efficiencies for the plant. At 900 °C the CO2 flux and permeance of the SNDC-carbonate membrane were 0.65 mL/cm2•min and 1.0×10-7 mol/m2•s•Pa, respectively. Detailed in this report are the following: background regarding CO2 separation membranes and IGCC power plants, SNDC tubular membrane preparation and characterization, IGCC with membrane reactor plant design, process heat and mass balance, and plant cost estimations.

Calcium hydroxide carbonation processes were studied to investigate the potential for abiotic soil improvement. Different mixtures of common soil constituents such as sand, clay, and granite were mixed with a calcium hydroxide slurry and carbonated at approximately 860 psi. While the carbonation was successful and calcite formation was strong on sample exteriors, a 4 mm passivating boundary layer effect was observed, impeding the carbonation process at the center. XRD analysis was used to characterize the extent of carbonation, indicating extremely poor carbonation and therefore CO2 penetration inside the visible boundary. The depth of the passivating layer was found to be independent of both time and choice of aggregate. Less than adequate strength was developed in carbonated trials due to formation of small, weakly-connected crystals, shown with SEM analysis. Additional research, especially in situ analysis with thermogravimetric analysis would be useful to determine the causation of poor carbonation performance. This technology has great potential to substitute for certain Portland cement applications if these issues can be addressed.

Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including their endocrine-disrupting properties and the long-term pollution they represent. The benefits of plastics are particularly apparent in medicine and public health. Plastics are versatile, cost-effective, require less energy to produce than alternative materials like metal or glass, and can be manufactured to have many different properties. Due to these characteristics, polymers are used in diverse health applications like disposable syringes and intravenous bags, sterile packaging for medical instruments as well as in joint replacements, tissue engineering, etc. However, not all current uses of plastics are prudent and sustainable, as illustrated by the widespread, unwanted human exposure to endocrine-disrupting bisphenol A (BPA) and di-(2-ethylhexyl) phthalate (DEHP), problems arising from the large quantities of plastic being disposed of, and depletion of non-renewable petroleum resources as a result of the ever-increasing mass production of plastic consumer articles. Using the health-care sector as example, this review concentrates on the benefits and downsides of plastics and identifies opportunities to change the composition and disposal practices of these invaluable polymers for a more sustainable future consumption. It highlights ongoing efforts to phase out DEHP and BPA in the health-care and food industry and discusses biodegradable options for plastic packaging, opportunities for reducing plastic medical waste, and recycling in medical facilities in the quest to reap a maximum of benefits from polymers without compromising human health or the environment in the process.

Ethanol is a widely used biofuel in the United States that is typically produced through the fermentation of biomass feedstocks. Demand for ethanol has grown significantly from 2000 to 2015 chiefly due to a desire to increase energy independence and reduce the emissions of greenhouse gases associated with transportation. As demand grows, new ethanol plants must be developed in order for supply to meet demand. This report covers some of the major considerations in developing these new plants such as the type of biomass used, feed treatment process, and product separation and investigates their effect on the economic viability and environmental benefits of the ethanol produced. The dry grind process for producing ethanol from corn, the most common method of production, is examined in greater detail. Analysis indicates that this process currently has the highest capacity for production and profitability but limited effect on greenhouse gas emissions compared to less common alternatives.
Plastic consumption has reached astronomical amounts. The issue is the single-use plastics that continue to harm the environment, degrading into microplastics that find their way into our environment. Finding sustainable, reliable, and safe methods to break down plastics is a complex but valuable endeavor. This research aims to assess the viability of using biochar as a catalyst to break down polyethylene terephthalate (PET) plastics under hydrothermal liquefaction conditions. PET is most commonly found in single-use plastic water bottles. Using glycolysis as the reaction, biochar is added and assessed based on yield and time duration of the reaction. This research suggests that temperatures of 300℃ and relatively short experimental times were enough to see the complete conversion of PET through glycolysis. Further research is necessary to determine the effectiveness of biochar as a catalyst and the potential of process industrialization to begin reducing plastic overflow.
The purpose of this thesis was to understand the importance of supply chain visibility (SCV) and to provide an analysis of the technology available for achieving SCV. Historical events where companies lacked efficient SCV were assessed to understand how errors in the supply chain can have detrimental effects on a company and their reputation. Environmental, social, and governance standards within the supply chain were defined along with the importance of meeting the legal and consumer expectations of a supply chain. There are many different organizations dedicated to helping companies meet ESG standards to achieve ethical, sustainable supply chains. Examples such as the Responsible Business Association and the Organization for Economic Co-Operation and Development were considered. A government solution to SCV, called the Freight Logistics Optimization Works Initiative, considered the importance of data sharing for large companies with complex supply chains, and this solution was assessed for understanding. Current companies and technologies available to achieve SCV were examined for understanding as to how the issue of SCV is currently addressed in the industry. A case study on the company Moses Lake Industries looked at how their complicated chemical manufacturing supply chain has adapted to achieve SCV. This included understanding supplier location, manufacturing processes, and risks. Future technologies that are currently being developed which could further benefit the supply chain industry were considered. Other future considerations, such as the movement of manufacturing out of high risk areas and the need for centralization of SCV solution, were also discussed.

Chemistry has always played a foundational role in the synthesis of pharmaceuticals. With the rapid growth of the global population, the health and medical needs have also rapidly increased. In order to provide drugs capable of mediating symptoms and curing diseases, organic chemistry provides drug derivatives utilizing a limited number of chemical building blocks and privileged structures. Of these limited building blocks, this project explores Late–stage C–H functionalization of (iso)quinolines using abundant metal catalysis in order to achieve site-selective molecular modification.
Climate change is one of the most pressing issues of the generation. Both faith organizations and scientific research are striving to solve problems related to climate change. Both show significant motivations to act on the effects that global warming is predicted to have. Combining the motivations and finding common ground could be the key to changing the fundamental issues that lead to climate change and both sides need each other to carry out the goal of preventing climate change. Some potential outcomes of cooperation are explored and the impact that these measures could have are described. These effects will be synthesized from previous research on the subjects, compiling qualitative data on the motivations and effects of both religion and science on climate change.

In 2019, the World Health Organization stated that climate change and air pollution is the greatest growing threat to humanity. With a world population of close to 8 billion people, the rate of population growth continues to increase nearly 1.05% each year. As the world population grows, carbon dioxide emissions and climate change continue to accelerate. By observing increasing concentrations of greenhouse gas emissions in the atmosphere, scientists have correlated that the Earth’s temperature is increasing at an average rate of 0.13 degrees Fahrenheit each decade. In an effort to mitigate and slow climate change engineers across the globe have been eagerly seeking solutions to fight this problem. A new form of carbon dioxide mitigation technology that has begun to gain traction in the last decade is known as direct air capture (DAC). Direct air capture works by removing excess atmospheric carbon dioxide from the air and repurposing it. The major challenge faced with DAC is not capturing the carbon dioxide but finding a useful way to reuse the post-capture carbon dioxide. As part of my undergraduate requirements, I was tasked to address this issue and create my own unique design for a DAC system. The design was to have three major goals: be 100% self-sufficient, have net zero carbon emissions, and successfully repurpose excess carbon dioxide into a sustainable and viable product. Arizona was chosen for the location of the system due to the large availability of sunlight. Additionally, the design was to utilize a protein rich hydrogen oxidizing bacteria (HOB) known as Cupriavidus Necator. By attaching a bioreactor to the DAC system, excess carbon dioxide will be directly converted into a dense protein biomass that will be used as food supplements. In addition, my system was designed to produce 1 ton (roughly 907.185 kg) of protein in a year. Lastly, by utilizing solar energy and an atmospheric water generator, the system will produce its own water and achieve the goal of being 100% self-sufficient.

The possibility of creating inorganic/organic hybrid materials has yet to be fully explored within geopolymer research. Using PDMS as an organic precursor, the surface of sodium and potassium geopolymers of varying precursor composition were functionalized with degraded PDMS oligomers. Both types of geopolymer yielded hydrophobic materials with BET surface area of 0.6475 m2/g and 4.342 m2/g for sodium and potassium geopolymer, respectively. Each respective material also had an oil capacity of 74.75 ± 4.06 weight% and 134.19 ± 4.89 weight%. X-ray diffraction analysis demonstrated that the PDMS functionalized sodium geopolymers had similar crystal structures that matched references for zeolite A and sodalite. The potassium geopolymers were amorphous, but showed consistency in diffraction patterns across different compositions.