Matching Items (32)
Filtering by

Clear all filters

136526-Thumbnail Image.png
Description
The purpose of this thesis is to examine the events surrounding the creation of the oboe and its rapid spread throughout Europe during the mid to late seventeenth century. The first section describes similar instruments that existed for thousands of years before the invention of the oboe. The following sections

The purpose of this thesis is to examine the events surrounding the creation of the oboe and its rapid spread throughout Europe during the mid to late seventeenth century. The first section describes similar instruments that existed for thousands of years before the invention of the oboe. The following sections examine reasons and methods for the oboe's invention, as well as possible causes of its migration from its starting place in France to other European countries, as well as many other places around the world. I conclude that the oboe was invented to suit the needs of composers in the court of Louis XIV, and that it was brought to other countries by French performers who left France for many reasons, including to escape from the authority of composer Jean-Baptiste Lully and in some cases to promote French culture in other countries.
ContributorsCook, Mary Katherine (Author) / Schuring, Martin (Thesis director) / Micklich, Albie (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Music (Contributor)
Created2015-05
136830-Thumbnail Image.png
DescriptionThe heat island effect has resulted in an observational increase in averave ambient as well as surface temperatures and current photovoltaic implementation do not migitate this effect. Thus, the feasibility and performance of alternative solutions are explored and determined using theoretical, computational data.
ContributorsCoyle, Aidan John (Author) / Trimble, Steven (Thesis director) / Underwood, Shane (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
136406-Thumbnail Image.png
Description
In this paper, I analyze representations of nature in popular film, using the feminist / deconstructionist concept of a dualism to structure my critique. Using Val Plumwood’s analysis of the logical structure of dualism and the 5 ‘features of a dualism’ that she identifies, I critique 5 popular movies –

In this paper, I analyze representations of nature in popular film, using the feminist / deconstructionist concept of a dualism to structure my critique. Using Val Plumwood’s analysis of the logical structure of dualism and the 5 ‘features of a dualism’ that she identifies, I critique 5 popular movies – Star Wars, Lord of the Rings, Brave, Grizzly Man, and Planet Earth – by locating within each of them one of the 5 features and explaining how the movie functions to reinforce the Nature/Culture dualism . By showing how the Nature/Culture dualism shapes and is shaped by popular cinema, I show how “Nature” is a social construct, created as part of this very dualism, and reified through popular culture. I conclude with the introduction of a number of ‘subversive’ pieces of visual art that undermine and actively deconstruct the Nature/Culture dualism and show to the viewer a more honest presentation of the non-human world.
ContributorsBarton, Christopher Joseph (Author) / Broglio, Ron (Thesis director) / Minteer, Ben (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2015-05
136330-Thumbnail Image.png
Description
We model communication among social insects as an interacting particle system in which individuals perform one of two tasks and neighboring sites anti-mimic one another. Parameters of our model are a probability of defection 2 (0; 1) and relative cost ci > 0 to the individual performing task i. We

We model communication among social insects as an interacting particle system in which individuals perform one of two tasks and neighboring sites anti-mimic one another. Parameters of our model are a probability of defection 2 (0; 1) and relative cost ci > 0 to the individual performing task i. We examine this process on complete graphs, bipartite graphs, and the integers, answering questions about the relationship between communication, defection rates and the division of labor. Assuming the division of labor is ideal when exactly half of the colony is performing each task, we nd that on some bipartite graphs and the integers it can eventually be made arbitrarily close to optimal if defection rates are sufficiently small. On complete graphs the fraction of individuals performing each task is also closest to one half when there is no defection, but is bounded by a constant dependent on the relative costs of each task.
ContributorsArcuri, Alesandro Antonio (Author) / Lanchier, Nicolas (Thesis director) / Kang, Yun (Committee member) / Fewell, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
133177-Thumbnail Image.png
Description
From 2007 to 2017, the state of California experienced two major droughts that required significant governmental action to decrease urban water demand. The purpose of this project is to isolate and explore the effects of these policy changes on water use during and after these droughts, and to see how

From 2007 to 2017, the state of California experienced two major droughts that required significant governmental action to decrease urban water demand. The purpose of this project is to isolate and explore the effects of these policy changes on water use during and after these droughts, and to see how these policies interact with hydroclimatic variability. As explanatory variables in multiple linear regression (MLR) models, water use policies were found to be significant at both the zip code and city levels. Policies that specifically target behavioral changes were significant mathematical drivers of water use in city-level models. Policy data was aggregated into a timeline and coded based on categories including user type, whether the policy was voluntary or mandatory, the targeted water use type, and whether the change in question concerns active or passive conservation. The analyzed policies include but are not limited to state drought declarations, regulatory municipal ordinances, and incentive programs for household appliances. Spatial averages of available hydroclimatic data have been computed and validated using inverse distance weighting methods. The data was aggregated at the zip code level to be comparable to the available water use data for use in MLR models. Factors already known to affect water use, such as temperature, precipitation, income, and water stress, were brought into the MLR models as explanatory variables. After controlling for these factors, the timeline policies were brought into the model as coded variables to test their effect on water demand during the years 2000-2017. Clearly identifying which policy traits are effective will inform future policymaking in cities aiming to conserve water. The findings suggest that drought-related policies impact per capita urban water use. The results of the city level MLR models indicate that implementation of mandatory policies that target water use behaviors effectively reduce water use. Temperature, income, unemployment, and the WaSSI were also observed to be mathematical drivers of water use. Interaction effects between policies and the WaSSI were statistically significant at both model scales.
ContributorsHjelmstad, Annika Margaret (Author) / Garcia, Margaret (Thesis director) / Larson, Kelli (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
137559-Thumbnail Image.png
Description
Serge Galams voting systems and public debate models are used to model voting behaviors of two competing opinions in democratic societies. Galam assumes that individuals in the population are independently in favor of one opinion with a fixed probability p, making the initial number of that type of opinion a

Serge Galams voting systems and public debate models are used to model voting behaviors of two competing opinions in democratic societies. Galam assumes that individuals in the population are independently in favor of one opinion with a fixed probability p, making the initial number of that type of opinion a binomial random variable. This analysis revisits Galams models from the point of view of the hypergeometric random variable by assuming the initial number of individuals in favor of an opinion is a fixed deterministic number. This assumption is more realistic, especially when analyzing small populations. Evolution of the models is based on majority rules, with a bias introduced when there is a tie. For the hier- archical voting system model, in order to derive the probability that opinion +1 would win, the analysis was done by reversing time and assuming that an individual in favor of opinion +1 wins. Then, working backwards we counted the number of configurations at the next lowest level that could induce each possible configuration at the level above, and continued this process until reaching the bottom level, i.e., the initial population. Using this method, we were able to derive an explicit formula for the probability that an individual in favor of opinion +1 wins given any initial count of that opinion, for any group size greater than or equal to three. For the public debate model, we counted the total number of individuals in favor of opinion +1 at each time step and used this variable to define a random walk. Then, we used first-step analysis to derive an explicit formula for the probability that an individual in favor of opinion +1 wins given any initial count of that opinion for group sizes of three. The spatial public debate model evolves based on the proportional rule. For the spatial model, the most natural graphical representation to construct the process results in a model that is not mathematically tractable. Thus, we defined a different graphical representation that is mathematically equivalent to the first graphical representation, but in this model it is possible to define a dual process that is mathematically tractable. Using this graphical representation we prove clustering in 1D and 2D and coexistence in higher dimensions following the same approach as for the voter model interacting particle system.
ContributorsTaylor, Nicole Robyn (Co-author) / Lanchier, Nicolas (Co-author, Thesis director) / Smith, Hal (Committee member) / Hurlbert, Glenn (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2013-05
137196-Thumbnail Image.png
Description
As society's energy crisis continues to become more imminent many industries and niches are seeking a new, sustainable and renewable source of electricity production. Similar to solar, wind and tidal energy, kinetic energy has the potential to generate electricity as an extremely renewable source of energy generation. While stationary bicycles

As society's energy crisis continues to become more imminent many industries and niches are seeking a new, sustainable and renewable source of electricity production. Similar to solar, wind and tidal energy, kinetic energy has the potential to generate electricity as an extremely renewable source of energy generation. While stationary bicycles can generate small amounts of electricity, the idea behind this project was to expand energy generation into the more common weight lifting side of exercising. The method for solving this problem was to find the average amount of power generated per user on a Smith machine and determine how much power was available from an accompanying energy generator. The generator consists of three phases: a copper coil and magnet generator, a full wave bridge rectifying circuit and a rheostat. These three phases working together formed a fully functioning controllable generator. The resulting issue with the kinetic energy generator was that the system was too inefficient to serve as a viable system for electricity generation. The electrical production of the generator only saved about 2 cents per year based on current Arizona electricity rates. In the end it was determined that the project was not a sustainable energy generation system and did not warrant further experimentation.
ContributorsO'Halloran, Ryan James (Author) / Middleton, James (Thesis director) / Hinrichs, Richard (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / The Design School (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
134712-Thumbnail Image.png
Description
Over the last century, society has begun to acknowledge and observe how human actions are negatively impacting the environment. Sustainable living is becoming more adopted into daily lives, including a focus on waste management and recycling. Previous informal studies have proposed that coffee grounds can be recycled and added to

Over the last century, society has begun to acknowledge and observe how human actions are negatively impacting the environment. Sustainable living is becoming more adopted into daily lives, including a focus on waste management and recycling. Previous informal studies have proposed that coffee grounds can be recycled and added to the soil to increase plant productivity. The objective of this experiment was to test how different concentrations of roasted coffee grounds would affect the overall plant productivity when introduced in the soil of various plant types and environmental atmospheres. Three treatments were selected (100% potting mix, 50% potting mix/50% coffee grounds, and 25% potting mix/75% coffee grounds) and applied to 3 acid-tolerating plants (radish, basil, and parsley). Each of these treatments were grown in 2 different environments, where one was planted in a Tempe, AZ backyard while the other group was planted in a lab environment, locating at Arizona State University's Tempe Campus. Each plant with its respective treatments (plant type, coffee ground treatment, and environment) had 10 identical plants for statistical accuracy, resulting in a total of 180 plants grown, observed, and analyzed for this 3-month long experiment. The plant development, plant height, length of roots, quantity of leaves, and environmental observations were recorded and used to define plant productivity in this investigation. The experiment demonstrated low survival rates in all groups including the control group, suggesting a flaw in the experimental design. Nonetheless, the experiment showed that among the surviving plants, the 75% treatment had the largest negative impact on plant productivity. The measured root lengths and leaf quantity had various results across each plant group, leaving the hypothesis unverified. Overall, the experiment was effective in demonstrating negative impacts of great concentrations of coffee grounds when introduced to various plants, but further investigation with an adjusted experimental design will need to be completed to reach a reliable conclusion.
ContributorsVan Winkle, Delaney Dare (Author) / Bang, Christofer (Thesis director) / Fox, Peter (Committee member) / Earl, Stevan (Committee member) / School of Sustainability (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134553-Thumbnail Image.png
Description
The purpose of this research is to study the effect of angle of acceptance and mechanical control system noise on the power available to a two-axis solar concentrating photovoltaic (CPV) system. The efficiency of a solar CPV system is greatly dependent on the accuracy of the tracking system because a

The purpose of this research is to study the effect of angle of acceptance and mechanical control system noise on the power available to a two-axis solar concentrating photovoltaic (CPV) system. The efficiency of a solar CPV system is greatly dependent on the accuracy of the tracking system because a strong focal point is needed to concentrate incident solar irradiation on the small, high efficiency cells. The objective of this study was to evaluate and quantify tracking accuracy for a performance model which would apply to similar two-axis systems. An analysis comparing CPV to traditional solar photovoltaics from an economic standpoint was conducted as well to evaluate the viability of emerging CPV technology. The research was performed using two calibrated solar radiation sensors mounted on the plane of the tracking system, normal to the sun. One sensor is held at a constant, normal angle (0 degrees) and the other is varied by a known interior angle in the range of 0 degrees to 10 degrees. This was to study the magnitude of the decrease in in irradiance as the angle deviation increases. The results show that, as the interior angle increases, the solar irradiance and thus available power available on the focal point will decrease roughly at a parabolic rate, with a sharp cutoff point at angles greater than 5 degrees. These findings have a significant impact on CPV system tracking mechanisms, which require high precision tracking in order to perform as intended.
ContributorsPodzemny, Dominic James (Author) / Reddy, Agami (Thesis director) / Kelman, Jonathan (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133482-Thumbnail Image.png
Description
Cryptocurrencies have become one of the most fascinating forms of currency and economics due to their fluctuating values and lack of centralization. This project attempts to use machine learning methods to effectively model in-sample data for Bitcoin and Ethereum using rule induction methods. The dataset is cleaned by removing entries

Cryptocurrencies have become one of the most fascinating forms of currency and economics due to their fluctuating values and lack of centralization. This project attempts to use machine learning methods to effectively model in-sample data for Bitcoin and Ethereum using rule induction methods. The dataset is cleaned by removing entries with missing data. The new column is created to measure price difference to create a more accurate analysis on the change in price. Eight relevant variables are selected using cross validation: the total number of bitcoins, the total size of the blockchains, the hash rate, mining difficulty, revenue from mining, transaction fees, the cost of transactions and the estimated transaction volume. The in-sample data is modeled using a simple tree fit, first with one variable and then with eight. Using all eight variables, the in-sample model and data have a correlation of 0.6822657. The in-sample model is improved by first applying bootstrap aggregation (also known as bagging) to fit 400 decision trees to the in-sample data using one variable. Then the random forests technique is applied to the data using all eight variables. This results in a correlation between the model and data of 9.9443413. The random forests technique is then applied to an Ethereum dataset, resulting in a correlation of 9.6904798. Finally, an out-of-sample model is created for Bitcoin and Ethereum using random forests, with a benchmark correlation of 0.03 for financial data. The correlation between the training model and the testing data for Bitcoin was 0.06957639, while for Ethereum the correlation was -0.171125. In conclusion, it is confirmed that cryptocurrencies can have accurate in-sample models by applying the random forests method to a dataset. However, out-of-sample modeling is more difficult, but in some cases better than typical forms of financial data. It should also be noted that cryptocurrency data has similar properties to other related financial datasets, realizing future potential for system modeling for cryptocurrency within the financial world.
ContributorsBrowning, Jacob Christian (Author) / Meuth, Ryan (Thesis director) / Jones, Donald (Committee member) / McCulloch, Robert (Committee member) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05