Matching Items (18)

Filtering by

Clear all filters

Algal Fuels: A Future Less Green than the Plant

Description

The algal fuel industry has existed since the 1980s without fully commercializing a product. Algal fuels are potentially viable replacements for fossil fuels due to their fast cultivation, high oil content, carbon dioxide sequestration during growth, and ability to

The algal fuel industry has existed since the 1980s without fully commercializing a product. Algal fuels are potentially viable replacements for fossil fuels due to their fast cultivation, high oil content, carbon dioxide sequestration during growth, and ability to be grown on non-arable land. For this thesis, six companies from 61 investigated were interviewed about their history with biofuels, technological changes they have gone through, and views for the future of the industry. All companies interviewed have moved away from fuel production largely due to high production costs and have moved primarily toward pharmaceuticals and animal feed production as well as wastewater treatment. While most do not plan to return to the biofuel industry in the near future, a return would likely require additional legislation, increased technological innovation, and coproduction of multiple products.

Contributors

Agent

Created

Date Created
2019-05

134454-Thumbnail Image.png

Backend Construction of a Web Service

Description

A growing number of stylists \u2014 cosmetologists \u2014 are finding it harder to afford the basic necessities such as rent. However, the ever-increasing presence of smartphones and the increasing need for on-demand services like Uber and Uber Eats creates a

A growing number of stylists \u2014 cosmetologists \u2014 are finding it harder to afford the basic necessities such as rent. However, the ever-increasing presence of smartphones and the increasing need for on-demand services like Uber and Uber Eats creates a unique opportunity for stylists \u2014 Clippr. Clippr is an application that aims to connect individual stylists directly to their customers. The application gives stylists a platform to create and display their own prices, services, and portfolio. Customers get the benefit of finding a stylist that suits them and booking instantly. This project outlines the backend for the Clippr application. It goes over the framework, REST API, and various functionalities of the application. Additionally, the project also covers the work that is still needed to successfully launch the application.

Contributors

Agent

Created

Date Created
2017-05

134209-Thumbnail Image.png

Temperature dependency on baseline of polymer modified Tuning Forks

Description

Polymer modified tuning fork-based sensors were fabricated to assure reproducibility. The effect of system valve switching on the modified tuning fork-based sensors was studied at the different temperature. The response to Xylene gas sample on stabilized modified tuning fork-based sensors

Polymer modified tuning fork-based sensors were fabricated to assure reproducibility. The effect of system valve switching on the modified tuning fork-based sensors was studied at the different temperature. The response to Xylene gas sample on stabilized modified tuning fork-based sensors with temperature was defined while learning about the key analytical performance for chemical sensors to be used in the real-world application.

Contributors

Agent

Created

Date Created
2017-05

133324-Thumbnail Image.png

Converting Combustion By-Products to Useful Chemicals and Fuels

Description

In the pursuit of sustainable sources of energy that do less harm to the environment, numerous technologies have been developed to reduce carbon emissions in the atmosphere. The implementation of carbon capture and storage systems (CCS) has played a crucial

In the pursuit of sustainable sources of energy that do less harm to the environment, numerous technologies have been developed to reduce carbon emissions in the atmosphere. The implementation of carbon capture and storage systems (CCS) has played a crucial role in reducing CO2 emissions, but depleting storage reserves and ever-increasing costs of sequestrating captured CO2 has prompted the idea of utilizing CO2 as soon as it is produced (i.e. carbon capture and utilization, or CCU) and storing any remaining amounts. This project analyzes the cost of implementing a delafossite CuFeO2 backed CCU system for the average US coal-burning power plant with respect to current amounts of CO2 captured. Beyond comparing annual maintenance costs of CCU and CCS systems, the project extends previous work done on direct CO2 conversion to liquid hydrocarbons by providing a protocol for determining how the presence of NO affects the products formed during pure CO2 hydrogenation. Overall, the goal is to gauge the applicability of CCU systems to power plants with a sub 10-year lifespan left, whilst observing the potential revenue that can be potentially generated from CCU implementation. Under current energy costs ($0.12 per kWh), a delafossite CuFeO2 supported CCU system would generate over $729 thousand in profit for an average sized supercritical pulverized coal power (SCPC) plants selling diesel fuel created from CO2 hydrogenation. This amount far exceeds the cost of storing captured CO2 and suggests that CCU systems can be profitable for SCPC power plants that intend to burn coal until 2025.

Contributors

Agent

Created

Date Created
2018-05

135442-Thumbnail Image.png

A Stability Study of the MOF-5 Membrane

Description

Within recent years, metal-organic frameworks, or MOF’s, have gained a lot of attention in the materials research community. These micro-porous materials are constructed of a metal oxide core and organic linkers, and have a wide-variety of applications due to their

Within recent years, metal-organic frameworks, or MOF’s, have gained a lot of attention in the materials research community. These micro-porous materials are constructed of a metal oxide core and organic linkers, and have a wide-variety of applications due to their extensive material characteristic possibilities. The focus of this study is the MOF-5 material, specifically its chemical stability in air. The MOF-5 material has a large pore size of 8 Å, and aperture sizes of 15 and 12 Å. The pore size, pore functionality, and physically stable structure makes MOF-5 a desirable material. MOF-5 holds applications in gas/liquid separation, catalysis, and gas storage. The main problem with the MOF-5 material, however, is its instability in atmospheric air. This inherent instability is due to the water in air binding to the zinc-oxide core, effectively changing the material and its structure. Because of this material weakness, the MOF-5 material is difficult to be utilized in industrial applications. Through the research efforts proposed by this study, the stability of the MOF-5 powder and membrane were studied. MOF-5 powder and a MOF-5 membrane were synthesized and characterized using XRD analysis. In an attempt to improve the stability of MOF-5 in air, methyl groups were added to the organic linker in order to hinder the interaction of water with the Zn4O core. This was done by replacing the terepthalic acid organic linker with 2,5-dimethyl terephthalic acid in the powder and membrane synthesis steps. The methyl-modified MOF-5 powder was found to be stable after several days of exposure to air while the MOF-5 powder exhibited significant crystalline change. The methyl-modified membrane was found to be unstable when synthesized using the same procedure as the MOF-5 membrane.

Contributors

Agent

Created

Date Created
2016-05

135418-Thumbnail Image.png

Squeezing Out Electricity: Computer-Aided Design and Optimization of Electrodes of Solid Oxide Fuel Cells

Description

Solid oxide fuel cells have become a promising candidate in the development of high-density clean energy sources for the rapidly increasing demands in energy and global sustainability. In order to understand more about solid oxide fuel cells, the important ste

Solid oxide fuel cells have become a promising candidate in the development of high-density clean energy sources for the rapidly increasing demands in energy and global sustainability. In order to understand more about solid oxide fuel cells, the important step is to understand how to model heterogeneous materials. Heterogeneous materials are abundant in nature and also created in various processes. The diverse properties exhibited by these materials result from their complex microstructures, which also make it hard to model the material. Microstructure modeling and reconstruction on a meso-scale level is needed in order to produce heterogeneous models without having to shave and image every slice of the physical material, which is a destructive and irreversible process. Yeong and Torquato [1] introduced a stochastic optimization technique that enables the generation of a model of the material with the use of correlation functions. Spatial correlation functions of each of the various phases within the heterogeneous structure are collected from a two-dimensional micrograph representing a slice of a solid oxide fuel cell through computational means. The assumption is that two-dimensional images contain key structural information representative of the associated full three-dimensional microstructure. The collected spatial correlation functions, a combination of one-point and two-point correlation functions are then outputted and are representative of the material. In the reconstruction process, the characteristic two-point correlation functions is then inputted through a series of computational modeling codes and software to generate a three-dimensional visual model that is statistically similar to that of the original two-dimensional micrograph. Furthermore, parameters of temperature cooling stages and number of pixel exchanges per temperature stage are utilized and altered accordingly to observe which parameters has a higher impact on the reconstruction results. Stochastic optimization techniques to produce three-dimensional visual models from two-dimensional micrographs are therefore a statistically reliable method to understanding heterogeneous materials.

Contributors

Agent

Created

Date Created
2016-05

136965-Thumbnail Image.png

Carbon Dioxide Separation by Ceramic-Carbonate Dual-Phase Membranes and Process Design for Membrane Reactor in IGCC Power Plant

Description

Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has

Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared to traditional coal-based power generation processes resulting in a reduction of greenhouse gas emissions. The goal of this project was to analyze the performance of a new SNDC ceramic-carbonate dual-phase membrane for CO2 separation. The chemical formula for the SNDC-carbonate membrane was Sm0.075Nd0.075Ce0.85O1.925. This project also focused on the use of this membrane for pre-combustion CO2 capture coupled with a water gas shift (WGS) reaction for a 1000 MW power plant. The addition of this membrane to the traditional IGCC process provides a purer H2 stream for combustion in the gas turbine and results in lower operating costs and increased efficiencies for the plant. At 900 °C the CO2 flux and permeance of the SNDC-carbonate membrane were 0.65 mL/cm2•min and 1.0×10-7 mol/m2•s•Pa, respectively. Detailed in this report are the following: background regarding CO2 separation membranes and IGCC power plants, SNDC tubular membrane preparation and characterization, IGCC with membrane reactor plant design, process heat and mass balance, and plant cost estimations.

Contributors

Agent

Created

Date Created
2014-05

135805-Thumbnail Image.png

Dimeric anthracene-based mechanophore particles for damage precursor detection in reinforced epoxy matrix composites

Description

The problem of catastrophic damage purveys in any material application, and minimizing its occurrence is paramount for general health and safety. We have successfully synthesized, characterized, and applied dimeric 9-anthracene carboxylic acid (Di-AC)-based mechanophores particles to form stress sensing epoxy

The problem of catastrophic damage purveys in any material application, and minimizing its occurrence is paramount for general health and safety. We have successfully synthesized, characterized, and applied dimeric 9-anthracene carboxylic acid (Di-AC)-based mechanophores particles to form stress sensing epoxy matrix composites. As Di-AC had never been previously applied as a mechanophore and thermosets are rarely studied in mechanochemistry, this created an alternative avenue for study in the field. Under an applied stress, the cyclooctane-rings in the Di-AC particles reverted back to their fluorescent anthracene form, which linearly enhanced the overall fluorescence of the composite in response to the applied strain. The fluorescent signal further allowed for stress sensing in the elastic region of the stress\u2014strain curve, which is considered to be a form of damage precursor detection. Overall, the incorporation of Di-AC to the epoxy matrix added much desired stress sensing and damage precursor detection capabilities with good retention of the material properties.

Contributors

Agent

Created

Date Created
2016-05

136500-Thumbnail Image.png

Design of an Ethanol Fermentation Plant

Description

Ethanol is a widely used biofuel in the United States that is typically produced through the fermentation of biomass feedstocks. Demand for ethanol has grown significantly from 2000 to 2015 chiefly due to a desire to increase energy independence and

Ethanol is a widely used biofuel in the United States that is typically produced through the fermentation of biomass feedstocks. Demand for ethanol has grown significantly from 2000 to 2015 chiefly due to a desire to increase energy independence and reduce the emissions of greenhouse gases associated with transportation. As demand grows, new ethanol plants must be developed in order for supply to meet demand. This report covers some of the major considerations in developing these new plants such as the type of biomass used, feed treatment process, and product separation and investigates their effect on the economic viability and environmental benefits of the ethanol produced. The dry grind process for producing ethanol from corn, the most common method of production, is examined in greater detail. Analysis indicates that this process currently has the highest capacity for production and profitability but limited effect on greenhouse gas emissions compared to less common alternatives.

Contributors

Agent

Created

Date Created
2015-05

135656-Thumbnail Image.png

Materials Replacement for Solar Thermal Covers

Description

Based on theoretical calculations, a material that is highly transmissive below 3000 nm and opaque above 3000 nm is desired to replace glass covers for flat plate solar thermal systems. Additionally, a suitable replacement material needs to have a sufficiently

Based on theoretical calculations, a material that is highly transmissive below 3000 nm and opaque above 3000 nm is desired to replace glass covers for flat plate solar thermal systems. Additionally, a suitable replacement material needs to have a sufficiently high operating temperature in order to prevent the glazing from melting and warping in a solar system. Traditional solar thermal applications use conventional soda lime glass or low iron content glass to accomplish this; however, this project aims to investigate acrylic, polycarbonate, and FEP film as suitable alternatives for conventional solar glazings. While UV-Vis and FT-IR spectroscopy indicate that these polymer substitutes may not be ideal when used alone, when used in combination with coatings and additives, these materials may present an opportunity for a glazing replacement. A model representing a flat plate solar collector was developed to qualitatively analyze the various materials and their performance. Using gathered spectroscopy data, the model was developed for a multi-glazing system and it was found that polymer substitutes could perform better in certain system configurations. To complete the model, the model must be verified using empirical data and coatings and additives investigated for the purposes of achieving the desired materials optical specifications.

Contributors

Agent

Created

Date Created
2016-05