Matching Items (1,819)
Filtering by

Clear all filters

151874-Thumbnail Image.png
Description
Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and

Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and a novel wind farm control approach has been modeled. The possibility of using lidar measurements to more fully characterize the wind field is discussed, specifically, terrain effects, spatial variation of winds, power density, and the effect of shear at different layers within the rotor swept area. Various vector retrieval methods have been applied to the lidar data, and results are presented on an elevated terrain-following surface at hub height. The vector retrieval estimates are compared with tower measurements, after interpolation to the appropriate level. CDL data is used to estimate the spatial power density at hub height. Since CDL can measure winds at different vertical levels, an approach for estimating wind power density over the wind turbine rotor-swept area is explored. Sample optimized layouts of wind farm using lidar data and global optimization algorithms, accounting for wake interaction effects, have been explored. An approach to evaluate spatial wind speed and direction estimates from a standard nested Coupled Ocean and Atmosphere Mesoscale Prediction System (COAMPS) model and CDL is presented. The magnitude of spatial difference between observations and simulation for wind energy assessment is researched. Diurnal effects and ramp events as estimated by CDL and COAMPS were inter-compared. Novel wind farm control based on incoming winds and direction input from CDL's is developed. Both yaw and pitch control using scanning CDL for efficient wind farm control is analyzed. The wind farm control optimizes power production and reduces loads on wind turbines for various lidar wind speed and direction inputs, accounting for wind farm wake losses and wind speed evolution. Several wind farm control configurations were developed, for enhanced integrability into the electrical grid. Finally, the value proposition of CDL for a wind farm development, based on uncertainty reduction and return of investment is analyzed.
ContributorsKrishnamurthy, Raghavendra (Author) / Calhoun, Ronald J (Thesis advisor) / Chen, Kangping (Committee member) / Huang, Huei-Ping (Committee member) / Fraser, Matthew (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
151879-Thumbnail Image.png
Description
This dissertation investigates the long-term consequences of human land-use practices in general, and in early agricultural villages in specific. This pioneering case study investigates the "collapse" of the Early (Pre-Pottery) Neolithic lifeway, which was a major transformational event marked by significant changes in settlement patterns, material culture, and social markers.

This dissertation investigates the long-term consequences of human land-use practices in general, and in early agricultural villages in specific. This pioneering case study investigates the "collapse" of the Early (Pre-Pottery) Neolithic lifeway, which was a major transformational event marked by significant changes in settlement patterns, material culture, and social markers. To move beyond traditional narratives of cultural collapse, I employ a Complex Adaptive Systems approach to this research, and combine agent-based computer simulations of Neolithic land-use with dynamic and spatially-explicit GIS-based environmental models to conduct experiments into long-term trajectories of different potential Neolithic socio-environmental systems. My analysis outlines how the Early Neolithic "collapse" was likely instigated by a non-linear sequence of events, and that it would have been impossible for Neolithic peoples to recognize the long-term outcome of their actions. The experiment-based simulation approach shows that, starting from the same initial conditions, complex combinations of feedback amplification, stochasticity, responses to internal and external stimuli, and the accumulation of incremental changes to the socio-natural landscape, can lead to widely divergent outcomes over time. Thus, rather than being an inevitable consequence of specific Neolithic land-use choices, the "catastrophic" transformation at the end of the Early Neolithic was an emergent property of the Early Neolithic socio-natural system itself, and thus likely not an easily predictable event. In this way, my work uses the technique of simulation modeling to connect CAS theory with the archaeological and geoarchaeological record to help better understand the causes and consequences of socio-ecological transformation at a regional scale. The research is broadly applicable to other archaeological cases of resilience and collapse, and is truly interdisciplinary in that it draws on fields such as geomorphology, computer science, and agronomy in addition to archaeology.
ContributorsUllah, Isaac (Author) / Barton, C. Michael (Thesis advisor) / Banning, Edward B. (Committee member) / Clark, Geoffrey (Committee member) / Arrowsmith, J. Ramon (Committee member) / Arizona State University (Publisher)
Created2013
151687-Thumbnail Image.png
Description

In recent years, an increase of environmental temperature in urban areas has raised many concerns. These areas are subjected to higher temperature compared to the rural surrounding areas. Modification of land surface and the use of materials such as concrete and/or asphalt are the main factors influencing the surface energy

In recent years, an increase of environmental temperature in urban areas has raised many concerns. These areas are subjected to higher temperature compared to the rural surrounding areas. Modification of land surface and the use of materials such as concrete and/or asphalt are the main factors influencing the surface energy balance and therefore the environmental temperature in the urban areas. Engineered materials have relatively higher solar energy absorption and tend to trap a relatively higher incoming solar radiation. They also possess a higher heat storage capacity that allows them to retain heat during the day and then slowly release it back into the atmosphere as the sun goes down. This phenomenon is known as the Urban Heat Island (UHI) effect and causes an increase in the urban air temperature. Many researchers believe that albedo is the key pavement affecting the urban heat island. However, this research has shown that the problem is more complex and that solar reflectivity may not be the only important factor to evaluate the ability of a pavement to mitigate UHI. The main objective of this study was to analyze and research the influence of pavement materials on the near surface air temperature. In order to accomplish this effort, test sections consisting of Hot Mix Asphalt (HMA), Porous Hot Mix asphalt (PHMA), Portland Cement Concrete (PCC), Pervious Portland Cement Concrete (PPCC), artificial turf, and landscape gravels were constructed in the Phoenix, Arizona area. Air temperature, albedo, wind speed, solar radiation, and wind direction were recorded, analyzed and compared above each pavement material type. The results showed that there was no significant difference in the air temperature at 3-feet and above, regardless of the type of the pavement. Near surface pavement temperatures were also measured and modeled. The results indicated that for the UHI analysis, it is important to consider the interaction between pavement structure, material properties, and environmental factors. Overall, this study demonstrated the complexity of evaluating pavement structures for UHI mitigation; it provided great insight on the effects of material types and properties on surface temperatures and near surface air temperature.

ContributorsPourshams-Manzouri, Tina (Author) / Kaloush, Kamil (Thesis advisor) / Wang, Zhihua (Thesis advisor) / Zapata, Claudia E. (Committee member) / Mamlouk, Michael (Committee member) / Arizona State University (Publisher)
Created2013
151689-Thumbnail Image.png
Description
Sparsity has become an important modeling tool in areas such as genetics, signal and audio processing, medical image processing, etc. Via the penalization of l-1 norm based regularization, the structured sparse learning algorithms can produce highly accurate models while imposing various predefined structures on the data, such as feature groups

Sparsity has become an important modeling tool in areas such as genetics, signal and audio processing, medical image processing, etc. Via the penalization of l-1 norm based regularization, the structured sparse learning algorithms can produce highly accurate models while imposing various predefined structures on the data, such as feature groups or graphs. In this thesis, I first propose to solve a sparse learning model with a general group structure, where the predefined groups may overlap with each other. Then, I present three real world applications which can benefit from the group structured sparse learning technique. In the first application, I study the Alzheimer's Disease diagnosis problem using multi-modality neuroimaging data. In this dataset, not every subject has all data sources available, exhibiting an unique and challenging block-wise missing pattern. In the second application, I study the automatic annotation and retrieval of fruit-fly gene expression pattern images. Combined with the spatial information, sparse learning techniques can be used to construct effective representation of the expression images. In the third application, I present a new computational approach to annotate developmental stage for Drosophila embryos in the gene expression images. In addition, it provides a stage score that enables one to more finely annotate each embryo so that they are divided into early and late periods of development within standard stage demarcations. Stage scores help us to illuminate global gene activities and changes much better, and more refined stage annotations improve our ability to better interpret results when expression pattern matches are discovered between genes.
ContributorsYuan, Lei (Author) / Ye, Jieping (Thesis advisor) / Wang, Yalin (Committee member) / Xue, Guoliang (Committee member) / Kumar, Sudhir (Committee member) / Arizona State University (Publisher)
Created2013
151716-Thumbnail Image.png
Description
The rapid escalation of technology and the widespread emergence of modern technological equipments have resulted in the generation of humongous amounts of digital data (in the form of images, videos and text). This has expanded the possibility of solving real world problems using computational learning frameworks. However, while gathering a

The rapid escalation of technology and the widespread emergence of modern technological equipments have resulted in the generation of humongous amounts of digital data (in the form of images, videos and text). This has expanded the possibility of solving real world problems using computational learning frameworks. However, while gathering a large amount of data is cheap and easy, annotating them with class labels is an expensive process in terms of time, labor and human expertise. This has paved the way for research in the field of active learning. Such algorithms automatically select the salient and exemplar instances from large quantities of unlabeled data and are effective in reducing human labeling effort in inducing classification models. To utilize the possible presence of multiple labeling agents, there have been attempts towards a batch mode form of active learning, where a batch of data instances is selected simultaneously for manual annotation. This dissertation is aimed at the development of novel batch mode active learning algorithms to reduce manual effort in training classification models in real world multimedia pattern recognition applications. Four major contributions are proposed in this work: $(i)$ a framework for dynamic batch mode active learning, where the batch size and the specific data instances to be queried are selected adaptively through a single formulation, based on the complexity of the data stream in question, $(ii)$ a batch mode active learning strategy for fuzzy label classification problems, where there is an inherent imprecision and vagueness in the class label definitions, $(iii)$ batch mode active learning algorithms based on convex relaxations of an NP-hard integer quadratic programming (IQP) problem, with guaranteed bounds on the solution quality and $(iv)$ an active matrix completion algorithm and its application to solve several variants of the active learning problem (transductive active learning, multi-label active learning, active feature acquisition and active learning for regression). These contributions are validated on the face recognition and facial expression recognition problems (which are commonly encountered in real world applications like robotics, security and assistive technology for the blind and the visually impaired) and also on collaborative filtering applications like movie recommendation.
ContributorsChakraborty, Shayok (Author) / Panchanathan, Sethuraman (Thesis advisor) / Balasubramanian, Vineeth N. (Committee member) / Li, Baoxin (Committee member) / Mittelmann, Hans (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2013
151718-Thumbnail Image.png
Description
The increasing popularity of Twitter renders improved trustworthiness and relevance assessment of tweets much more important for search. However, given the limitations on the size of tweets, it is hard to extract measures for ranking from the tweet's content alone. I propose a method of ranking tweets by generating a

The increasing popularity of Twitter renders improved trustworthiness and relevance assessment of tweets much more important for search. However, given the limitations on the size of tweets, it is hard to extract measures for ranking from the tweet's content alone. I propose a method of ranking tweets by generating a reputation score for each tweet that is based not just on content, but also additional information from the Twitter ecosystem that consists of users, tweets, and the web pages that tweets link to. This information is obtained by modeling the Twitter ecosystem as a three-layer graph. The reputation score is used to power two novel methods of ranking tweets by propagating the reputation over an agreement graph based on tweets' content similarity. Additionally, I show how the agreement graph helps counter tweet spam. An evaluation of my method on 16~million tweets from the TREC 2011 Microblog Dataset shows that it doubles the precision over baseline Twitter Search and achieves higher precision than current state of the art method. I present a detailed internal empirical evaluation of RAProp in comparison to several alternative approaches proposed by me, as well as external evaluation in comparison to the current state of the art method.
ContributorsRavikumar, Srijith (Author) / Kambhampati, Subbarao (Thesis advisor) / Davulcu, Hasan (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2013
152225-Thumbnail Image.png
Description
The dynamics of urban water use are characterized by spatial and temporal variability that is influenced by associated factors at different scales. Thus it is important to capture the relationship between urban water use and its determinants in a spatio-temporal framework in order to enhance understanding and management of urban

The dynamics of urban water use are characterized by spatial and temporal variability that is influenced by associated factors at different scales. Thus it is important to capture the relationship between urban water use and its determinants in a spatio-temporal framework in order to enhance understanding and management of urban water demand. This dissertation aims to contribute to understanding the spatio-temporal relationships between single-family residential (SFR) water use and its determinants in a desert city. The dissertation has three distinct papers to support this goal. In the first paper, I demonstrate that aggregated scale data can be reliably used to study the relationship between SFR water use and its determinants without leading to significant ecological fallacy. The usability of aggregated scale data facilitates scientific inquiry about SFR water use with more available aggregated scale data. The second paper advances understanding of the relationship between SFR water use and its associated factors by accounting for the spatial and temporal dependence in a panel data setting. The third paper of this dissertation studies the historical contingency, spatial heterogeneity, and spatial connectivity in the relationship of SFR water use and its determinants by comparing three different regression models. This dissertation demonstrates the importance and necessity of incorporating spatio-temporal components, such as scale, dependence, and heterogeneity, into SFR water use research. Spatial statistical models should be used to understand the effects of associated factors on water use and test the effectiveness of certain management policies since spatial effects probably will significantly influence the estimates if only non-spatial statistical models are used. Urban water demand management should pay attention to the spatial heterogeneity in predicting the future water demand to achieve more accurate estimates, and spatial statistical models provide a promising method to do this job.
ContributorsOuyang, Yun (Author) / Wentz, Elizabeth (Thesis advisor) / Ruddell, Benjamin (Thesis advisor) / Harlan, Sharon (Committee member) / Janssen, Marcus (Committee member) / Arizona State University (Publisher)
Created2013
152226-Thumbnail Image.png
Description
Farmers' markets are a growing trend both in Arizona and the broader U.S., as many recognize them as desirable alternatives to the conventional food system. As icons of sustainability, farmers' markets are touted as providing many environmental, social, and economic benefits, but evidence is mounting that local food systems primarily

Farmers' markets are a growing trend both in Arizona and the broader U.S., as many recognize them as desirable alternatives to the conventional food system. As icons of sustainability, farmers' markets are touted as providing many environmental, social, and economic benefits, but evidence is mounting that local food systems primarily serve the urban elite, with relatively few low-income or minority customers. However, the economic needs of the market and its vendors often conflict with those of consumers. While consumers require affordable food, farmers need to make a profit. How farmers' markets are designed and governed can significantly influence the extent to which they can meet these needs. However, very little research explores farmers' market design and governance, much less its capacity to influence financial success and participation for underprivileged consumers. The present study examined this research gap by addressing the following research question: How can farmers' markets be institutionally designed to increase the participation of underprivileged consumers while maintaining a financially viable market for local farmers? Through a comparative case study of six markets, this research explored the extent to which farmers' markets in Central Arizona currently serve the needs of farmer-vendors and underprivileged consumers. The findings suggest that while the markets serve as a substantial source of income for some vendors, participation by low-income and minority consumers remains low, and that much of this appears to be due to cultural barriers to access. Management structures, site characteristics, market layout, community programs, and staffing policies are key institutional design features, and the study explores how these can be leveraged to better meet the needs of the diverse participants while improving the markets' financial success.
ContributorsTaylor, Carissa (Author) / Aggarwal, Rimjhim (Thesis advisor) / York, Abigail (Committee member) / Wharton, Christopher (Christopher Mack), 1977- (Committee member) / Arizona State University (Publisher)
Created2013
152234-Thumbnail Image.png
Description
One of the main challenges in planetary robotics is to traverse the shortest path through a set of waypoints. The shortest distance between any two waypoints is a direct linear traversal. Often times, there are physical restrictions that prevent a rover form traversing straight to a waypoint. Thus, knowledge of

One of the main challenges in planetary robotics is to traverse the shortest path through a set of waypoints. The shortest distance between any two waypoints is a direct linear traversal. Often times, there are physical restrictions that prevent a rover form traversing straight to a waypoint. Thus, knowledge of the terrain is needed prior to traversal. The Digital Terrain Model (DTM) provides information about the terrain along with waypoints for the rover to traverse. However, traversing a set of waypoints linearly is burdensome, as the rovers would constantly need to modify their orientation as they successively approach waypoints. Although there are various solutions to this problem, this research paper proposes the smooth traversability of the rover using splines as a quick and easy implementation to traverse a set of waypoints. In addition, a rover was used to compare the smoothness of the linear traversal along with the spline interpolations. The data collected illustrated that spline traversals had a less rate of change in the velocity over time, indicating that the rover performed smoother than with linear paths.
ContributorsKamasamudram, Anurag (Author) / Saripalli, Srikanth (Thesis advisor) / Fainekos, Georgios (Thesis advisor) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
152236-Thumbnail Image.png
Description
Continuous Delivery, as one of the youngest and most popular member of agile model family, has become a popular concept and method in software development industry recently. Instead of the traditional software development method, which requirements and solutions must be fixed before starting software developing, it promotes adaptive planning, evolutionary

Continuous Delivery, as one of the youngest and most popular member of agile model family, has become a popular concept and method in software development industry recently. Instead of the traditional software development method, which requirements and solutions must be fixed before starting software developing, it promotes adaptive planning, evolutionary development and delivery, and encourages rapid and flexible response to change. However, several problems prevent Continuous Delivery to be introduced into education world. Taking into the consideration of the barriers, we propose a new Cloud based Continuous Delivery Software Developing System. This system is designed to fully utilize the whole life circle of software developing according to Continuous Delivery concepts in a virtualized environment in Vlab platform.
ContributorsDeng, Yuli (Author) / Huang, Dijiang (Thesis advisor) / Davulcu, Hasan (Committee member) / Chen, Yinong (Committee member) / Arizona State University (Publisher)
Created2013