Matching Items (1,108)
Filtering by

Clear all filters

152137-Thumbnail Image.png
Description
Firstly, this study uses community asset mapping guided by the Community Capitals Framework (CCF) to explore the linkages between Protected Areas (PAs), tourism and community livelihoods. Secondly, it assesses changes in community needs facilitated by community participation in wildlife-based tourism in a protected area setting. Thirdly and finally, the study

Firstly, this study uses community asset mapping guided by the Community Capitals Framework (CCF) to explore the linkages between Protected Areas (PAs), tourism and community livelihoods. Secondly, it assesses changes in community needs facilitated by community participation in wildlife-based tourism in a protected area setting. Thirdly and finally, the study assesses whether the introduction of community wildlife-based tourism in a protected area as a sustainable management tool has led to the spiraling up or down of community capitals. The study adopted qualitative research method approach and made use of data collected through community asset mapping supplemented by data from focus group discussions, households, key informants, and secondary data materials that were analyzed and interpreted in light of community capital framework. The Chobe National Park (CNP) and Chobe Enclave Conservation Trust (CECT); a community living adjacent to CNP in Botswana provides the context on which this study's discussion focuses. Results indicate that the accession of Botswana from colonialism through post colonialism era intertwined considerable institutional arrangement changes in the field of protected area governance that reflects evolutionary management styles. Protected areas, tourism and community livelihoods linkages are based on many inter-dependents of community capitals relationships which are dependent on community socio-economic activities. In assessing changes in community needs, the results indicate that participation in wildlife-based tourism has brought both positive and negative changes that have implications on both the status quo for community livelihoods and protected areas, namely; the influence of changes in community capitals dynamics, mechanization and commercialization of agriculture, government funded infrastructural development, income generation, and the commodification of some of the community capitals. Finally, the increased livelihoods options and diversification dynamics, fragile wildlife-livestock co-existence, heightened human-wildlife conflicts, environmental education and awareness are the emerging themes that explain how the introduction of tourism in a protected area setting affect the spiraling up and down of the community capitals dynamics.
ContributorsStone, Moren T. (Author) / Nyaupane, Gyan P (Thesis advisor) / Buduk, Megha (Committee member) / Thapa, Brijesh (Committee member) / Timothy, Dallen J. (Committee member) / Arizona State University (Publisher)
Created2013
152084-Thumbnail Image.png
Description
This research presents an analysis of the main institutions and economic incentives that drive farmers behaviors on water use in the Chancay-Lambayeque basin, located in Lambayeque (Peru), a semi arid area of great agricultural importance. I focus my research on identifying the underlying causes of non-collaborative behaviors in regard to

This research presents an analysis of the main institutions and economic incentives that drive farmers behaviors on water use in the Chancay-Lambayeque basin, located in Lambayeque (Peru), a semi arid area of great agricultural importance. I focus my research on identifying the underlying causes of non-collaborative behaviors in regard to water appropriation and infrastructure provisioning decision that generates violent conflicts between users. Since there is not an agreed and concrete criteria to assess "sustainability" I used economic efficiency as my evaluative criteria because, even though this is not a sufficient condition to achieve sustainability it is a necessary one, and thus achieving economic efficiency is moving towards sustainable outcomes. Water management in the basin is far from being economic efficient which means that there is some room for improving social welfare. Previous studies of the region have successfully described the symptoms of this problem; however, they did not focus their study on identifying the causes of the problem. In this study, I describe and analyze how different rules and norms (institutions) define farmers behaviors related to water use. For this, I use the Institutional Analysis and Development framework and a dynamic game theory model to analyze how biophysical attributes, community attributes and rules of the system combined with other factors, can affect farmers actions in regard to water use and affect the sustainability of water resources. Results show that water rights are the factor that is fundamental to the problem. Then, I present an outline for policy recommendation, which includes a revision of water rights and related rules and policies that could increase the social benefits with the use of compensation mechanisms to reach economic efficiency. Results also show that commonly proposed solutions, as switch to less water intensive and more added value crops, improvement in the agronomic and entrepreneurial knowledge, or increases in water tariffs, can mitigate or exacerbate the loss of benefits that come from the poor incentives in the system; but they do not change the nature of the outcome.
ContributorsRubinos, Cathy (Author) / Eakin, Hallie (Committee member) / Abbot, Joshua K (Committee member) / York, Abigail (Committee member) / Arizona State University (Publisher)
Created2013
152093-Thumbnail Image.png
Description
Irrigation agriculture has been heralded as the solution to feeding the world's growing population. To this end, irrigation agriculture is both extensifying and intensifying in arid regions across the world in an effort to create highly productive agricultural systems. Over one third of modern irrigated fields, however, show signs of

Irrigation agriculture has been heralded as the solution to feeding the world's growing population. To this end, irrigation agriculture is both extensifying and intensifying in arid regions across the world in an effort to create highly productive agricultural systems. Over one third of modern irrigated fields, however, show signs of serious soil degradation, including salinization and waterlogging, which threaten the productivity of these fields and the world's food supply. Surprisingly, little ecological data on agricultural soils have been collected to understand and address these problems. How, then, can expanding and intensifying modern irrigation systems remain agriculturally productive for the long-term? Archaeological case studies can provide critical insight into how irrigated agricultural systems may be sustainable for hundreds, if not thousands, of years. Irrigation systems in Mesopotamia, for example, have been cited consistently as a cautionary tale of the relationship between mismanaged irrigation systems and the collapse of civilizations, but little data expressly link how and why irrigation failed in the past. This dissertation presents much needed ecological data from two different regions of the world - the Phoenix Basin in southern Arizona and the Pampa de Chaparrí on the north coast of Peru - to explore how agricultural soils were affected by long-term irrigation in a variety of social and economic contexts, including the longevity and intensification of irrigation agriculture. Data from soils in prehispanic and historic agricultural fields indicate that despite long-lived and intensive irrigation farming, farmers in both regions created strategies to sustain large populations with irrigation agriculture for hundreds of years. In the Phoenix Basin, Hohokam and O'odham farmers relied on sedimentation from irrigation water to add necessary fine sediments and nutrients to otherwise poor desert soils. Similarly, on the Pampa, farmers relied on sedimentation in localized contexts, but also constructed fields with ridges and furrows to draw detrimental salts away from planting surfaces in the furrows on onto the ridges. These case studies are then compared to failing modern and ancient irrigated systems across the world to understand how the centralization of management may affect the long-term sustainability of irrigation agriculture.
ContributorsStrawhacker, Colleen (Author) / Spielmann, Katherine A. (Thesis advisor) / Hall, Sharon J (Committee member) / Nelson, Margaret C. (Committee member) / Sandor, Jonathan A (Committee member) / Arizona State University (Publisher)
Created2013
152109-Thumbnail Image.png
Description
During the months from June to November 2012, the city of Bangalore was faced with a serious solid waste management (SWM) crisis. In the wake of the upheaval, the state court declared source segregation to be mandatory. Yet, while the legislation was clear, the pathway towards a course of action

During the months from June to November 2012, the city of Bangalore was faced with a serious solid waste management (SWM) crisis. In the wake of the upheaval, the state court declared source segregation to be mandatory. Yet, while the legislation was clear, the pathway towards a course of action for the transition was not clear and hence, Bangalore was stuck in a state of limbo. The objectives for this thesis spiraled organically from this crisis. The first objective was to examine the gaps in Bangalore's transition to a more sustainable SWM system. Six particular gaps were identified, which in essence, were opportunities to re-shape the system. The gaps identified included: conflicting political agendas, the exclusion of some key actors, and lack of adequate attention to cultural aspects, provision of appropriate incentives, protection of livelihoods and promotion of innovation. Opportunities were found in better incentivization of sustainable SWM goals, protecting livelihoods that depend on waste, enhancing innovation and endorsing local, context based SWM solutions. Building on this understanding of gaps, the second objective was to explore an innovative, local, bottom-up waste-management model called the Vellore Zero Waste Model, and assess its applicability to Bangalore. The adaptability of the model depended on several factors such as, willingness of actors to redefine their roles and change functions, ability of the municipality to assure quality and oversight, willingness of citizen to source segregate, and most importantly, the political will and collective action needed to ensure and sustain the transition. The role of communication as a vital component to facilitate productive stakeholder engagement and to promote role change was evident. Therefore, the third objective of the study was to explore how interpersonal competencies and communication strategies could be used as a tool to facilitate stakeholder engagement and encourage collective action. In addressing these objectives, India was compared with Austria because Austria is often cited as having some of the best SWM practices in the world and has high recycling rates to show for its reputation.
ContributorsRengarajan, Nivedita (Author) / Aggarwal, Rimjhim (Thesis advisor) / Chhetri, Nalini (Committee member) / Manuel-Navarrete, David (Committee member) / Arizona State University (Publisher)
Created2013
152246-Thumbnail Image.png
Description
Smoke entering a flight deck cabin has been an issue for commercial aircraft for many years. The issue for a flight crew is how to mitigate the smoke so that they can safely fly the aircraft. For this thesis, the feasibility of having a Negative Pressure System that utilizes the

Smoke entering a flight deck cabin has been an issue for commercial aircraft for many years. The issue for a flight crew is how to mitigate the smoke so that they can safely fly the aircraft. For this thesis, the feasibility of having a Negative Pressure System that utilizes the cabin altitude pressure and outside altitude pressure to remove smoke from a flight deck was studied. Existing procedures for flight crews call for a descent down to a safe level for depressurizing the aircraft before taking further action. This process takes crucial time that is critical to the flight crew's ability to keep aware of the situation. This process involves a flight crews coordination and fast thinking to manually take control of the aircraft; which has become increasing more difficult due to the advancements in aircraft automation. Unfortunately this is the only accepted procedure that is used by a flight crew. Other products merely displace the smoke. This displacement is after the time it takes for the flight crew to set up the smoke displacement unit with no guarantee that a flight crew will be able to see or use all of the aircraft's controls. The Negative Pressure System will work automatically and not only use similar components already found on the aircraft, but work in conjunction with the smoke detection system and pressurization system so smoke removal can begin without having to descend down to a lower altitude. In order for this system to work correctly many factors must be taken into consideration. The size of a flight deck varies from aircraft to aircraft, therefore the ability for the system to efficiently remove smoke from an aircraft is taken into consideration. For the system to be feasible on an aircraft the cost and weight must be taken into consideration as the added fuel consumption due to weight of the system may be the limiting factor for installing such a system on commercial aircraft.
ContributorsDavies, Russell (Author) / Rogers, Bradley (Thesis advisor) / Palmgren, Dale (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2013
152254-Thumbnail Image.png
Description
The friction condition is an important factor in controlling the compressing process in metalforming. The friction calibration maps (FCM) are widely used in estimating friction factors between the workpiece and die. However, in standard FEA, the friction condition is defined by friction coefficient factor (µ), while the FCM is used

The friction condition is an important factor in controlling the compressing process in metalforming. The friction calibration maps (FCM) are widely used in estimating friction factors between the workpiece and die. However, in standard FEA, the friction condition is defined by friction coefficient factor (µ), while the FCM is used to a constant shear friction factors (m) to describe the friction condition. The purpose of this research is to find a method to convert the m factor to u factor, so that FEA can be used to simulate ring tests with µ. The research is carried out with FEA and Design of Experiment (DOE). FEA is used to simulate the ring compression test. A 2D quarter model is adopted as geometry model. A bilinear material model is used in nonlinear FEA. After the model is established, validation tests are conducted via the influence of Poisson's ratio on the ring compression test. It is shown that the established FEA model is valid especially if the Poisson's ratio is close to 0.5 in the setting of FEA. Material folding phenomena is present in this model, and µ factors are applied at all surfaces of the ring respectively. It is also found that the reduction ratio of the ring and the slopes of the FCM can be used to describe the deformation of the ring specimen. With the baseline FEA model, some formulas between the deformation parameters, material mechanical properties and µ factors are generated through the statistical analysis to the simulating results of the ring compression test. A method to substitute the m factor with µ factors for particular material by selecting and applying the µ factor in time sequence is found based on these formulas. By converting the m factor into µ factor, the cold forging can be simulated.
ContributorsKexiang (Author) / Shah, Jami (Thesis advisor) / Davidson, Joseph (Committee member) / Trimble, Steve (Committee member) / Arizona State University (Publisher)
Created2013
151895-Thumbnail Image.png
Description
Since its launch by the US Green Building Council (USGBC), Leadership in Energy and Environmental Design (LEED) certification has been postured as the "gold standard" for environmentally conscious, sustainable building design, construction and operations. However, as a "living measurement", one which requires ongoing evaluation and reporting of attainment and compliance

Since its launch by the US Green Building Council (USGBC), Leadership in Energy and Environmental Design (LEED) certification has been postured as the "gold standard" for environmentally conscious, sustainable building design, construction and operations. However, as a "living measurement", one which requires ongoing evaluation and reporting of attainment and compliance with LEED certification requirements, there is none. Once awarded, LEED certification does not have a required reporting component to effectively track continued adherence to LEED standards. In addition, there is no expiry tied to the certification; once obtained, a LEED certification rating is presumed to be a valid representation of project certification status. Therefore, LEED lacks a requirement to demonstrate environmental impact of construction materials and building systems over the entire life of the project. Consequently, LEED certification is merely a label rather than a true representation of ongoing adherence to program performance requirements over time. Without continued monitoring and reporting of building design and construction features, and in the absence of recertification requirements, LEED is, in reality, a gold star rather than a gold standard. This thesis examines the lack of required ongoing monitoring, reporting, or recertification requirements following the award by the USGBC of LEED certification; compares LEED with other international programs which do have ongoing reporting or recertification requirements; demonstrates the need and benefit of ongoing reporting or recertification requirements; and explores possible methods for implementation of mandatory reporting requirements within the program.
ContributorsCarpenter, Anne Therese (Author) / Olson, Larry (Thesis advisor) / Hild, Nicholas (Committee member) / Brown, Albert (Committee member) / Arizona State University (Publisher)
Created2013
151914-Thumbnail Image.png
Description
Derived from the necessity to increase testing capabilities of hybrid rocket motor (HRM) propulsion systems for Daedalus Astronautics at Arizona State University, a small-scale motor and test stand were designed and developed to characterize all components of the system. The motor is designed for simple integration and setup, such that

Derived from the necessity to increase testing capabilities of hybrid rocket motor (HRM) propulsion systems for Daedalus Astronautics at Arizona State University, a small-scale motor and test stand were designed and developed to characterize all components of the system. The motor is designed for simple integration and setup, such that both the forward-end enclosure and end cap can be easily removed for rapid integration of components during testing. Each of the components of the motor is removable allowing for a broad range of testing capabilities. While examining injectors and their potential it is thought ideal to obtain the highest regression rates and overall motor performance possible. The oxidizer and fuel are N2O and hydroxyl-terminated polybutadiene (HTPB), respectively, due to previous experience and simplicity. The injector designs, selected for the same reasons, are designed such that they vary only in the swirl angle. This system provides the platform for characterizing the effects of varying said swirl angle on HRM performance.
ContributorsSummers, Matt H (Author) / Lee, Taewoo (Thesis advisor) / Chen, Kangping (Committee member) / Wells, Valana (Committee member) / Arizona State University (Publisher)
Created2013
151916-Thumbnail Image.png
Description
Through manipulation of adaptable opportunities available within a given environment, individuals become active participants in managing personal comfort requirements, by exercising control over their comfort without the assistance of mechanical heating and cooling systems. Similarly, continuous manipulation of a building skin's form, insulation, porosity, and transmissivity qualities exerts control over

Through manipulation of adaptable opportunities available within a given environment, individuals become active participants in managing personal comfort requirements, by exercising control over their comfort without the assistance of mechanical heating and cooling systems. Similarly, continuous manipulation of a building skin's form, insulation, porosity, and transmissivity qualities exerts control over the energy exchanged between indoor and outdoor environments. This research uses four adaptive response variables in a modified software algorithm to explore an adaptive building skin's potential in reacting to environmental stimuli with the purpose of minimizing energy use without sacrificing occupant comfort. Results illustrate that significant energy savings can be realized with adaptive envelopes over static building envelopes even under extreme summer and winter climate conditions; that the magnitude of these savings are dependent on climate and orientation; and that occupant thermal comfort can be improved consistently over comfort levels achieved by optimized static building envelopes. The resulting adaptive envelope's unique climate-specific behavior could inform designers in creating an intelligent kinetic aesthetic that helps facilitate adaptability and resiliency in architecture.
ContributorsErickson, James (Author) / Bryan, Harvey (Thesis advisor) / Addison, Marlin (Committee member) / Kroelinger, Michael D. (Committee member) / Reddy, T. Agami (Committee member) / Arizona State University (Publisher)
Created2013
151919-Thumbnail Image.png
Description
In the past three decades alone, the United States has witnessed a dramatic rise in the prevalence of obesity and overweight in adults and children. Efforts towards obesity mitigation and prevention have produced promising recommendations and researchers and practitioners alike acknowledge that real solutions must match the complexity of the

In the past three decades alone, the United States has witnessed a dramatic rise in the prevalence of obesity and overweight in adults and children. Efforts towards obesity mitigation and prevention have produced promising recommendations and researchers and practitioners alike acknowledge that real solutions must match the complexity of the problem. Comprehensive approaches that target environmental, economic, socio-cultural, and knowledge-based factors that influence diet and physical activity are highly recommended. However, the literature yields little in the way of what such comprehensive obesity interventions actually entail and how they ought to be developed. In particular, there are knowledge gaps in how various stakeholder groups can bridge institutional barriers to collaborate in ways that maximize resources, build upon synergies, and avoid duplication of efforts; and how specific recommendations are actually implemented. This thesis aims to contribute to an emerging body of literature that fills this gap by presenting a practical case study on how to create a playground obesity intervention in the Gateway District of Phoenix, Arizona, in collaboration with researchers, health professionals, neighborhood residents, and city officials. The objectives were two-fold: 1. To outline concrete steps that will allow an organization to create a playground linked with healthy kids education program that aims to increase physical activity, perceptions of safety, and community cohesion; 2. To outline how diverse stakeholders can collaborate effectively to create such a cohesive, complex obesity intervention. A detailed, actionable intervention manual was drafted through semi-structured interviews, literature review, a survey, a stakeholder workshop, and an extended peer-review. The manual describes the sequence of actions necessary for creating an innovative playground that reinforces learning, encourages creative play, and increases physical activity. The sequence of actions was linked with existing local assets, stakeholder roles and responsibilities, costs, and potential barriers. This manual, as well as the process itself, can serve as a transferable model for helping organizations come together to build the capacity required in order to tackle complex health challenges.
ContributorsXiong, Angela (Author) / Wiek, Arnim (Thesis advisor) / Golub, Aaron (Committee member) / Otu, Essen (Committee member) / Arizona State University (Publisher)
Created2013