Matching Items (3)
Filtering by

Clear all filters

136965-Thumbnail Image.png
Description
Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared

Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared to traditional coal-based power generation processes resulting in a reduction of greenhouse gas emissions. The goal of this project was to analyze the performance of a new SNDC ceramic-carbonate dual-phase membrane for CO2 separation. The chemical formula for the SNDC-carbonate membrane was Sm0.075Nd0.075Ce0.85O1.925. This project also focused on the use of this membrane for pre-combustion CO2 capture coupled with a water gas shift (WGS) reaction for a 1000 MW power plant. The addition of this membrane to the traditional IGCC process provides a purer H2 stream for combustion in the gas turbine and results in lower operating costs and increased efficiencies for the plant. At 900 °C the CO2 flux and permeance of the SNDC-carbonate membrane were 0.65 mL/cm2•min and 1.0×10-7 mol/m2•s•Pa, respectively. Detailed in this report are the following: background regarding CO2 separation membranes and IGCC power plants, SNDC tubular membrane preparation and characterization, IGCC with membrane reactor plant design, process heat and mass balance, and plant cost estimations.
ContributorsDunteman, Nicholas Powell (Author) / Lin, Jerry (Thesis director) / Dong, Xueliang (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-05
165458-Thumbnail Image.png
Description

In 2019, the World Health Organization stated that climate change and air pollution is the greatest growing threat to humanity. With a world population of close to 8 billion people, the rate of population growth continues to increase nearly 1.05% each year. As the world population grows, carbon dioxide emissions

In 2019, the World Health Organization stated that climate change and air pollution is the greatest growing threat to humanity. With a world population of close to 8 billion people, the rate of population growth continues to increase nearly 1.05% each year. As the world population grows, carbon dioxide emissions and climate change continue to accelerate. By observing increasing concentrations of greenhouse gas emissions in the atmosphere, scientists have correlated that the Earth’s temperature is increasing at an average rate of 0.13 degrees Fahrenheit each decade. In an effort to mitigate and slow climate change engineers across the globe have been eagerly seeking solutions to fight this problem. A new form of carbon dioxide mitigation technology that has begun to gain traction in the last decade is known as direct air capture (DAC). Direct air capture works by removing excess atmospheric carbon dioxide from the air and repurposing it. The major challenge faced with DAC is not capturing the carbon dioxide but finding a useful way to reuse the post-capture carbon dioxide. As part of my undergraduate requirements, I was tasked to address this issue and create my own unique design for a DAC system. The design was to have three major goals: be 100% self-sufficient, have net zero carbon emissions, and successfully repurpose excess carbon dioxide into a sustainable and viable product. Arizona was chosen for the location of the system due to the large availability of sunlight. Additionally, the design was to utilize a protein rich hydrogen oxidizing bacteria (HOB) known as Cupriavidus Necator. By attaching a bioreactor to the DAC system, excess carbon dioxide will be directly converted into a dense protein biomass that will be used as food supplements. In addition, my system was designed to produce 1 ton (roughly 907.185 kg) of protein in a year. Lastly, by utilizing solar energy and an atmospheric water generator, the system will produce its own water and achieve the goal of being 100% self-sufficient.

ContributorsMacIsaac, Ian (Author) / Lin, Jerry (Thesis director) / Ovalle-Encinia, Oscar (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor)
Created2022-05
190760-Thumbnail Image.png
Description
This study deals with various flow field designs for anode, cathode, and coolant plates for optimizing the performance of proton exchange membrane fuel cell using H2 and air. In particular, the 3D models with various flow field patterns such as single parallel serpentine (anode), multi parallel (anode), multi-parallel serpentine (cathode),

This study deals with various flow field designs for anode, cathode, and coolant plates for optimizing the performance of proton exchange membrane fuel cell using H2 and air. In particular, the 3D models with various flow field patterns such as single parallel serpentine (anode), multi parallel (anode), multi-parallel serpentine (cathode), multi serpentine (cathode) have been evaluated for enhancing the fuel cell performance at 60 oC, with three different coolant flow designs (mirror serpentine, multi serpentine and parallel serpentine). Both the peak power and limiting current density are considered based on the parameters such as temperature distribution, pressure distribution, reactants/species distribution and the membrane water content on the active area (50 cm2) region. It is interesting to note that the coolant channel also has a significant effect in regulating the fuel cell performance at high current densities, in addition to reactant gas flow channels. The simulated single cell with Nafion (thickness: 18 m) demonstrates a peak power density of 0.97 W.cm-2 with single parallel serpentine (anode), multi parallel serpentine (cathode) and serpentine (coolant) and 0.91 W.cm-2 with multi parallel (anode), multi serpentine (cathode), and parallel serpentine (coolant) flow field designs. The simulated fuel cell performance is also experimentally validated with four cells at 60 oC using H2 fuel and air as the oxidant.
ContributorsAhmed, Rafiq (Author) / Mada Kannan, Arunachala (Thesis advisor) / Torres, Cesar (Committee member) / Lin, Jerry (Committee member) / Arizona State University (Publisher)
Created2023