Matching Items (27)
Filtering by

Clear all filters

135418-Thumbnail Image.png
Description
Solid oxide fuel cells have become a promising candidate in the development of high-density clean energy sources for the rapidly increasing demands in energy and global sustainability. In order to understand more about solid oxide fuel cells, the important step is to understand how to model heterogeneous materials. Heterogeneous materials

Solid oxide fuel cells have become a promising candidate in the development of high-density clean energy sources for the rapidly increasing demands in energy and global sustainability. In order to understand more about solid oxide fuel cells, the important step is to understand how to model heterogeneous materials. Heterogeneous materials are abundant in nature and also created in various processes. The diverse properties exhibited by these materials result from their complex microstructures, which also make it hard to model the material. Microstructure modeling and reconstruction on a meso-scale level is needed in order to produce heterogeneous models without having to shave and image every slice of the physical material, which is a destructive and irreversible process. Yeong and Torquato [1] introduced a stochastic optimization technique that enables the generation of a model of the material with the use of correlation functions. Spatial correlation functions of each of the various phases within the heterogeneous structure are collected from a two-dimensional micrograph representing a slice of a solid oxide fuel cell through computational means. The assumption is that two-dimensional images contain key structural information representative of the associated full three-dimensional microstructure. The collected spatial correlation functions, a combination of one-point and two-point correlation functions are then outputted and are representative of the material. In the reconstruction process, the characteristic two-point correlation functions is then inputted through a series of computational modeling codes and software to generate a three-dimensional visual model that is statistically similar to that of the original two-dimensional micrograph. Furthermore, parameters of temperature cooling stages and number of pixel exchanges per temperature stage are utilized and altered accordingly to observe which parameters has a higher impact on the reconstruction results. Stochastic optimization techniques to produce three-dimensional visual models from two-dimensional micrographs are therefore a statistically reliable method to understanding heterogeneous materials.
ContributorsPhan, Richard Dylan (Author) / Jiao, Yang (Thesis director) / Ren, Yi (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135442-Thumbnail Image.png
Description
Within recent years, metal-organic frameworks, or MOF’s, have gained a lot of attention in the materials research community. These micro-porous materials are constructed of a metal oxide core and organic linkers, and have a wide-variety of applications due to their extensive material characteristic possibilities. The focus of this study is

Within recent years, metal-organic frameworks, or MOF’s, have gained a lot of attention in the materials research community. These micro-porous materials are constructed of a metal oxide core and organic linkers, and have a wide-variety of applications due to their extensive material characteristic possibilities. The focus of this study is the MOF-5 material, specifically its chemical stability in air. The MOF-5 material has a large pore size of 8 Å, and aperture sizes of 15 and 12 Å. The pore size, pore functionality, and physically stable structure makes MOF-5 a desirable material. MOF-5 holds applications in gas/liquid separation, catalysis, and gas storage. The main problem with the MOF-5 material, however, is its instability in atmospheric air. This inherent instability is due to the water in air binding to the zinc-oxide core, effectively changing the material and its structure. Because of this material weakness, the MOF-5 material is difficult to be utilized in industrial applications. Through the research efforts proposed by this study, the stability of the MOF-5 powder and membrane were studied. MOF-5 powder and a MOF-5 membrane were synthesized and characterized using XRD analysis. In an attempt to improve the stability of MOF-5 in air, methyl groups were added to the organic linker in order to hinder the interaction of water with the Zn4O core. This was done by replacing the terepthalic acid organic linker with 2,5-dimethyl terephthalic acid in the powder and membrane synthesis steps. The methyl-modified MOF-5 powder was found to be stable after several days of exposure to air while the MOF-5 powder exhibited significant crystalline change. The methyl-modified membrane was found to be unstable when synthesized using the same procedure as the MOF-5 membrane.
ContributorsAnderson, Anthony David (Author) / Lin, Jerry Y.S. (Thesis director) / Ibrahim, Amr (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135656-Thumbnail Image.png
Description
Based on theoretical calculations, a material that is highly transmissive below 3000 nm and opaque above 3000 nm is desired to replace glass covers for flat plate solar thermal systems. Additionally, a suitable replacement material needs to have a sufficiently high operating temperature in order to prevent the glazing from

Based on theoretical calculations, a material that is highly transmissive below 3000 nm and opaque above 3000 nm is desired to replace glass covers for flat plate solar thermal systems. Additionally, a suitable replacement material needs to have a sufficiently high operating temperature in order to prevent the glazing from melting and warping in a solar system. Traditional solar thermal applications use conventional soda lime glass or low iron content glass to accomplish this; however, this project aims to investigate acrylic, polycarbonate, and FEP film as suitable alternatives for conventional solar glazings. While UV-Vis and FT-IR spectroscopy indicate that these polymer substitutes may not be ideal when used alone, when used in combination with coatings and additives, these materials may present an opportunity for a glazing replacement. A model representing a flat plate solar collector was developed to qualitatively analyze the various materials and their performance. Using gathered spectroscopy data, the model was developed for a multi-glazing system and it was found that polymer substitutes could perform better in certain system configurations. To complete the model, the model must be verified using empirical data and coatings and additives investigated for the purposes of achieving the desired materials optical specifications.
ContributorsBessant, Justin Zachary (Author) / Friesen, Cody (Thesis director) / Lorzel, Heath (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136591-Thumbnail Image.png
Description
Microbial fuel cells (MFCs) promote the sustainable conversion of organic matter in black water to electrical current, enabling the production of hydrogen peroxide (H2O2) while making waste water treatment energy neutral or positive. H2O2 is useful in remote locations such as U.S. military forward operating bases (FOBs) for on-site tertiary

Microbial fuel cells (MFCs) promote the sustainable conversion of organic matter in black water to electrical current, enabling the production of hydrogen peroxide (H2O2) while making waste water treatment energy neutral or positive. H2O2 is useful in remote locations such as U.S. military forward operating bases (FOBs) for on-site tertiary water treatment or as a medical disinfectant, among many other uses. Various carbon-based catalysts and binders for use at the cathode of a an MFC for H2O2 production are explored using linear sweep voltammetry (LSV) and rotating ring-disk electrode (RRDE) techniques. The oxygen reduction reaction (ORR) at the cathode has slow kinetics at conditions present in the MFC, making it important to find a catalyst type and loading which promote a 2e- (rather than 4e-) reaction to maximize H2O2 formation. Using LSV methods, I compared the cathodic overpotentials associated with graphite and Vulcan carbon catalysts as well as Nafion and AS-4 binders. Vulcan carbon catalyst with Nafion binder produced the lowest overpotentials of any binder/catalyst combinations. Additionally, I determined that pH control may be required at the cathode due to large potential losses caused by hydroxide (OH-) concentration gradients. Furthermore, RRDE tests indicate that Vulcan carbon catalyst with a Nafion binder has a higher H2O2 production efficiency at lower catalyst loadings, but the trade-off is a greater potential loss due to higher activation energy. Therefore, an intermediate catalyst loading of 0.5 mg/cm2 Vulcan carbon with Nafion binder is recommended for the final MFC design. The chosen catalyst, binder, and loading will maximize H2O2 production, optimize MFC performance, and minimize the need for additional energy input into the system.
ContributorsStadie, Mikaela Johanna (Author) / Torres, Cesar (Thesis director) / Popat, Sudeep (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136500-Thumbnail Image.png
Description
Ethanol is a widely used biofuel in the United States that is typically produced through the fermentation of biomass feedstocks. Demand for ethanol has grown significantly from 2000 to 2015 chiefly due to a desire to increase energy independence and reduce the emissions of greenhouse gases associated with transportation. As

Ethanol is a widely used biofuel in the United States that is typically produced through the fermentation of biomass feedstocks. Demand for ethanol has grown significantly from 2000 to 2015 chiefly due to a desire to increase energy independence and reduce the emissions of greenhouse gases associated with transportation. As demand grows, new ethanol plants must be developed in order for supply to meet demand. This report covers some of the major considerations in developing these new plants such as the type of biomass used, feed treatment process, and product separation and investigates their effect on the economic viability and environmental benefits of the ethanol produced. The dry grind process for producing ethanol from corn, the most common method of production, is examined in greater detail. Analysis indicates that this process currently has the highest capacity for production and profitability but limited effect on greenhouse gas emissions compared to less common alternatives.
ContributorsSchrilla, John Paul (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136132-Thumbnail Image.png
Description
Calcium hydroxide carbonation processes were studied to investigate the potential for abiotic soil improvement. Different mixtures of common soil constituents such as sand, clay, and granite were mixed with a calcium hydroxide slurry and carbonated at approximately 860 psi. While the carbonation was successful and calcite formation was strong on

Calcium hydroxide carbonation processes were studied to investigate the potential for abiotic soil improvement. Different mixtures of common soil constituents such as sand, clay, and granite were mixed with a calcium hydroxide slurry and carbonated at approximately 860 psi. While the carbonation was successful and calcite formation was strong on sample exteriors, a 4 mm passivating boundary layer effect was observed, impeding the carbonation process at the center. XRD analysis was used to characterize the extent of carbonation, indicating extremely poor carbonation and therefore CO2 penetration inside the visible boundary. The depth of the passivating layer was found to be independent of both time and choice of aggregate. Less than adequate strength was developed in carbonated trials due to formation of small, weakly-connected crystals, shown with SEM analysis. Additional research, especially in situ analysis with thermogravimetric analysis would be useful to determine the causation of poor carbonation performance. This technology has great potential to substitute for certain Portland cement applications if these issues can be addressed.
ContributorsHermens, Stephen Edward (Author) / Bearat, Hamdallah (Thesis director) / Dai, Lenore (Committee member) / Mobasher, Barzin (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136965-Thumbnail Image.png
Description
Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared

Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared to traditional coal-based power generation processes resulting in a reduction of greenhouse gas emissions. The goal of this project was to analyze the performance of a new SNDC ceramic-carbonate dual-phase membrane for CO2 separation. The chemical formula for the SNDC-carbonate membrane was Sm0.075Nd0.075Ce0.85O1.925. This project also focused on the use of this membrane for pre-combustion CO2 capture coupled with a water gas shift (WGS) reaction for a 1000 MW power plant. The addition of this membrane to the traditional IGCC process provides a purer H2 stream for combustion in the gas turbine and results in lower operating costs and increased efficiencies for the plant. At 900 °C the CO2 flux and permeance of the SNDC-carbonate membrane were 0.65 mL/cm2•min and 1.0×10-7 mol/m2•s•Pa, respectively. Detailed in this report are the following: background regarding CO2 separation membranes and IGCC power plants, SNDC tubular membrane preparation and characterization, IGCC with membrane reactor plant design, process heat and mass balance, and plant cost estimations.
ContributorsDunteman, Nicholas Powell (Author) / Lin, Jerry (Thesis director) / Dong, Xueliang (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-05
135239-Thumbnail Image.png
Description
Nitrate (NO3- ) and selenate (SeO42-) are common contaminants found in mining wastewater. Biological treatment has proved successful using bacteria capable of respiring NO3- into nitrogen gas and SeO42- into Se°. The Membrane Biofilm Reactor (MBfR) utilizes biofilm communities on the surface of hollow-fiber membranes to transform oxidized water

Nitrate (NO3- ) and selenate (SeO42-) are common contaminants found in mining wastewater. Biological treatment has proved successful using bacteria capable of respiring NO3- into nitrogen gas and SeO42- into Se°. The Membrane Biofilm Reactor (MBfR) utilizes biofilm communities on the surface of hollow-fiber membranes to transform oxidized water contaminants into innocuous reduced products. For this project, I set up two MBfRs in a lead and lag configuration to reduce NO3- [input at ~40-45 mg NO3-N/L] and SeO42- [0.62 mg/L], while avoiding sulfate (SO42-) [~1600-1660 mg/L] reduction. Over the course of three experimental phases, I controlled two operating conditions: the applied hydrogen pressure and the total electron acceptor loading. NO3- in the lead MBfR showed average reductions of 50%, 94%, and 91% for phases I, II, and III, respectively. In the lag MBfR, NO3- was reduced by 40%, 96%, and 100% for phases I, II, and III. NO2- was formed in Stage I when NO3- was not reduced completely; nevertheless NO2- accumulation was absent for the remainder of operation. In the lead MBfR, SeO42- was reduced by 65%, 87%, and 50% for phases I, II, and III. In the lag MBfR, SeO42- was reduced 60%, 27%, and 23% for phases I, II, and III. SO42- was not reduced in either MBfR. Biofilm communities were composed of denitrifying bacteria Rhodocyclales and Burkholderiales, Dechloromonas along with the well-known SeO42--reducing Thauera were abundant genera in the biofilm communities. Although SO42- reduction was suppressed, sulfate-reducing bacteria were present in the biofilm. To optimize competition for electron donor and space in the biofilm, optimal operational conditions were hydrogen pressures of 26 and 7 psig and total electron acceptor loading of 3.8 and 3.4 g H2/m2 day for the lead and lag MBfR, respectively.
ContributorsMehta, Sanya Vipul (Author) / Rittmann, Bruce (Thesis director) / Ontiveros-Valencia, Aura (Committee member) / Chemical Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135272-Thumbnail Image.png
Description
Microbial fuel cells (MFCs) facilitate the conversion of organic matter to electrical current to make the total energy in black water treatment neutral or positive and produce hydrogen peroxide to assist the reuse of gray water. This research focuses on wastewater treatment at the U.S. military forward operating bases (FOBs).

Microbial fuel cells (MFCs) facilitate the conversion of organic matter to electrical current to make the total energy in black water treatment neutral or positive and produce hydrogen peroxide to assist the reuse of gray water. This research focuses on wastewater treatment at the U.S. military forward operating bases (FOBs). FOBs experience significant challenges with their wastewater treatment due to their isolation and dangers in transporting waste water and fresh water to and from the bases. Even though it is theoretically favorable to produce power in a MFC while treating black water, producing H2O2 is more useful and practical because it is a powerful cleaning agent that can reduce odor, disinfect, and aid in the treatment of gray water. Various acid forms of buffers were tested in the anode and cathode chamber to determine if the pH would lower in the cathode chamber while maintaining H2O2 efficiency, as well as to determine ion diffusion from the anode to the cathode via the membrane. For the catholyte experiments, phosphate and bicarbonate were tested as buffers while sodium chloride was the control. These experiments determined that the two buffers did not lower the pH. It was seen that the phosphate buffer reduced the H2O2 efficiency significantly while still staying at a high pH, while the bicarbonate buffer had the same efficiency as the NaCl control. For the anolyte experiments, it was shown that there was no diffusion of the buffers or MFC media across the membrane that would cause a decrease in the H2O2 production efficiency.
ContributorsThompson, Julia (Author) / Torres, Cesar (Thesis director) / Popat, Sudeep (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134454-Thumbnail Image.png
Description
A growing number of stylists \u2014 cosmetologists \u2014 are finding it harder to afford the basic necessities such as rent. However, the ever-increasing presence of smartphones and the increasing need for on-demand services like Uber and Uber Eats creates a unique opportunity for stylists \u2014 Clippr. Clippr is an application

A growing number of stylists \u2014 cosmetologists \u2014 are finding it harder to afford the basic necessities such as rent. However, the ever-increasing presence of smartphones and the increasing need for on-demand services like Uber and Uber Eats creates a unique opportunity for stylists \u2014 Clippr. Clippr is an application that aims to connect individual stylists directly to their customers. The application gives stylists a platform to create and display their own prices, services, and portfolio. Customers get the benefit of finding a stylist that suits them and booking instantly. This project outlines the backend for the Clippr application. It goes over the framework, REST API, and various functionalities of the application. Additionally, the project also covers the work that is still needed to successfully launch the application.
ContributorsKamath, Sanketh (Author) / Olsen, Christopher (Thesis director) / Sebold, Brent (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05