Matching Items (2)
Filtering by

Clear all filters

156589-Thumbnail Image.png
Description
The volume of end-of-life photovoltaic (PV) modules is increasing as the global PV market increases, and the global PV waste streams are expected to reach 250,000 metric tons by the end of 2020. If the recycling processes are not in place, there would be 60 million tons of end-of-life PV

The volume of end-of-life photovoltaic (PV) modules is increasing as the global PV market increases, and the global PV waste streams are expected to reach 250,000 metric tons by the end of 2020. If the recycling processes are not in place, there would be 60 million tons of end-of-life PV modules lying in the landfills by 2050, that may not become a not-so-sustainable way of sourcing energy since all PV modules could contain certain amount of toxic substances. Currently in the United States, PV modules are categorized as general waste and can be disposed in landfills. However, potential leaching of toxic chemicals and materials, if any, from broken end-of-life modules may pose health or environmental risks. There is no standard procedure to remove samples from PV modules for chemical toxicity testing in the Toxicity Characteristic Leaching Procedure (TCLP) laboratories as per EPA 1311 standard. The main objective of this thesis is to develop an unbiased sampling approach for the TCLP testing of PV modules. The TCLP testing was concentrated only for the laminate part of the modules, as they are already existing recycling technologies for the frame and junction box components of PV modules. Four different sample removal methods have been applied to the laminates of five different module manufacturers: coring approach, cell-cut approach, strip-cut approach, and hybrid approach. These removed samples were sent to two different TCLP laboratories, and TCLP results were tested for repeatability within a lab and reproducibility between the labs. The pros and cons of each sample removal method have been explored and the influence of sample removal methods on the variability of TCLP results has been discussed. To reduce the variability of TCLP results to an acceptable level, additional improvements in the coring approach, the best of the four tested options, are still needed.
ContributorsLeslie, Joswin (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Kuitche, Joseph (Committee member) / Arizona State University (Publisher)
Created2018
157528-Thumbnail Image.png
Description
Demand for green energy alternatives to provide stable and reliable energy

solutions has increased over the years which has led to the rapid expansion of global

markets in renewable energy sources such as solar photovoltaic (PV) technology. Newest

amongst these technologies is the Bifacial PV modules, which harvests incident radiation

from both sides of

Demand for green energy alternatives to provide stable and reliable energy

solutions has increased over the years which has led to the rapid expansion of global

markets in renewable energy sources such as solar photovoltaic (PV) technology. Newest

amongst these technologies is the Bifacial PV modules, which harvests incident radiation

from both sides of the module. The overall power generation can be significantly increased

by using these bifacial modules. The purpose of this research is to investigate and maximize

the effect of back reflectors, designed to increase the efficiency of the module by utilizing

the intercell light passing through the module to increase the incident irradiance, on the

energy output using different profiles placed at varied distances from the plane of the array

(POA). The optimum reflector profile and displacement of the reflector from the module

are determined experimentally.

Theoretically, a 60-cell bifacial module can produce 26% additional energy in

comparison to a 48-cell bifacial module due to the 12 excess cells found in the 60-cell

module. It was determined that bifacial modules have the capacity to produce additional

energy when optimized back reflectors are utilized. The inverted U reflector produced

higher energy gain when placed at farther distances from the module, indicating direct

dependent proportionality between the placement distance of the reflector from the module

and the output energy gain. It performed the best out of all current construction geometries

with reflective coatings, generating more than half of the additional energy produced by a

densely-spaced 60-cell benchmark module compared to a sparsely-spaced 48-cell reference

module.ii

A gain of 11 and 14% was recorded on cloudy and sunny days respectively for the

inverted U reflector. This implies a reduction in the additional cells of the 60-cell module

by 50% can produce the same amount of energy of the 60-cell module by a 48-cell module

with an inverted U reflector. The use of the back reflectors does not only affect the

additional energy gain but structural and land costs. Row to row spacing for bifacial

systems(arrays) is reduced nearly by half as the ground height clearance is largely

minimized, thus almost 50% of height constraints for mounting bifacial modules, using

back reflectors resulting in reduced structural costs for mounting of bifacial modules
ContributorsMARTIN, PEDRO JESSE (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2019