Matching Items (5)
Filtering by

Clear all filters

151783-Thumbnail Image.png
Description
The United Nation's Framework Convention on Climate Change (UNFCCC) recognizes development as a priority for carbon dioxide (CO2) allocation, under its principle of "common but differentiated responsibilities". This was codified in the Kyoto Protocol, which exempt developing nations from binding emission reduction targets. Additionally, they could be the recipients of

The United Nation's Framework Convention on Climate Change (UNFCCC) recognizes development as a priority for carbon dioxide (CO2) allocation, under its principle of "common but differentiated responsibilities". This was codified in the Kyoto Protocol, which exempt developing nations from binding emission reduction targets. Additionally, they could be the recipients of financed sustainable development projects in exchange for emission reduction credits that the developed nations could use to comply with emission targets. Due to ineffective results, post-Kyoto policy discussions indicate a transition towards mitigation commitments from major developed and developing emitters, likely supplemented by market-based mechanisms to reduce mitigation costs. Although the likelihood of achieving substantial emission reductions is increased by the new plan, there is a paucity of consideration to how an ethic of development might be advanced. Therefore, this research empirically investigates the role that CO2 plays in advancing human development (in terms of the Human Development Index or HDI) over the 1990 to 2010 time period. Based on empirical evidence, a theoretical CO2-development framework is established, which provides a basis for designing a novel policy proposal that integrates mitigation efforts with human development objectives. Empirical evidence confirms that CO2 and HDI are highly correlated, but that there are diminishing returns to HDI as per capita CO2 emissions increase. An examination of development pathways reveals that as nations develop, their trajectories generally become less coupled with CO2. Moreover, the developing countries with the greatest gains in HDI are also nations that have, or are in the process of moving toward, outward-oriented trade policies that involve increased domestic capabilities for product manufacture and export. With these findings in mind, future emission targets should reduce current emissions in developed nations and allow room for HDI growth in developing countries as well as in the least developed nations of the world. Emission trading should also be limited to nations with similar HDI levels to protect less-developed nations from unfair competition for capacity building resources. Lastly, developed countries should be incentivized to invest in joint production ventures within the LDCs to build capacity for self-reliant and sustainable development over the long-term.
ContributorsClark, Susan Spierre (Author) / Seager, Thomas P. (Thesis advisor) / Allenby, Braden (Committee member) / Klinsky, Sonja (Committee member) / Arizona State University (Publisher)
Created2013
152588-Thumbnail Image.png
Description
A methodology is developed that integrates institutional analysis with Life Cycle Assessment (LCA) to identify and overcome barriers to sustainability transitions and to bridge the gap between environmental practitioners and decisionmakers. LCA results are rarely joined with analyses of the social systems that control or influence decisionmaking and policies. As

A methodology is developed that integrates institutional analysis with Life Cycle Assessment (LCA) to identify and overcome barriers to sustainability transitions and to bridge the gap between environmental practitioners and decisionmakers. LCA results are rarely joined with analyses of the social systems that control or influence decisionmaking and policies. As a result, LCA conclusions generally lack information about who or what controls different parts of the system, where and when the processes' environmental decisionmaking happens, and what aspects of the system (i.e. a policy or regulatory requirement) would have to change to enable lower environmental impact futures. The value of the combined institutional analysis and LCA (the IA-LCA) is demonstrated using a case study of passenger transportation in the Phoenix, Arizona metropolitan area. A retrospective LCA is developed to estimate how roadway investment has enabled personal vehicle travel and its associated energy, environmental, and economic effects. Using regional travel forecasts, a prospective life cycle inventory is developed. Alternative trajectories are modeled to reveal future "savings" from reduced roadway construction and vehicle travel. An institutional analysis matches the LCA results with the specific institutions, players, and policies that should be targeted to enable transitions to these alternative futures. The results show that energy, economic, and environmental benefits from changes in passenger transportation systems are possible, but vary significantly depending on the timing of the interventions. Transition strategies aimed at the most optimistic benefits should include 1) significant land-use planning initiatives at the local and regional level to incentivize transit-oriented development infill and urban densification, 2) changes to state or federal gasoline taxes, 3) enacting a price on carbon, and 4) nearly doubling vehicle fuel efficiency together with greater market penetration of alternative fuel vehicles. This aggressive trajectory could decrease the 2050 energy consumption to 1995 levels, greenhouse gas emissions to 1995, particulate emissions to 2006, and smog-forming emissions to 1972. The potential benefits and costs are both private and public, and the results vary when transition strategies are applied in different spatial and temporal patterns.
ContributorsKimball, Mindy (Author) / Chester, Mikhail (Thesis advisor) / Allenby, Braden (Committee member) / Golub, Aaron (Committee member) / Arizona State University (Publisher)
Created2014
156235-Thumbnail Image.png
Description
High performing and sustainable building certification bodies continue to update their requirements, leading to scope modification of certifications, and an increasing number of viable sources of environmental information for building materials. In conjunction, the Architecture, Engineering, and Construction (AEC) industry is seeing increasing demand for such environmental product information. The

High performing and sustainable building certification bodies continue to update their requirements, leading to scope modification of certifications, and an increasing number of viable sources of environmental information for building materials. In conjunction, the Architecture, Engineering, and Construction (AEC) industry is seeing increasing demand for such environmental product information. The industry and certifications are moving from using single attribute environmental information about building materials to lifecycle based information to inform their design decisions.

This dissertation seeks to understand the current practices, and then focus on strategies to effectively utilize newer sources of environmental product information in high performance building design. The first phase of research used a survey of 119 U.S.-based AEC practitioners experienced in certified sustainable building projects to understand how the numerous sources of environmental information are currently used in the building design process. The second phase asked two focus groups of experienced AEC professionals to develop a Message Sequence Chart (MSC) that documents the conceptual design process for a recently designed building. Then, the focus group participants integrated a new sustainability requirement for building materials, Environmental Product Declarations (EPDs), into their project, and documented the adjustments to their specific design process in a second, modified MSC highlighting potential drivers for inclusion of EPDs. Finally, the author examines the broader applicability of these drivers through case studies. Specifically, 19 certified high-performance building (HPB) case studies, for reviewing the impact of three different potential drivers on the design team’s approach to considering environmental product information during conceptual design of a HPB, as well as the projects certification level.

LEED certification has changed the design of buildings, and the new information sources for building materials will inform the way the industry selects building materials. Meanwhile, these information sources will need to expand to include a growing number of products, and potentially more data as the industry’s understanding of the impacts of building materials develops. This research expands upon previous research on LEED certification to illustrates that owner engagement and commitment to the HPB process is a critical success factor for the use of environmental product information about building materials.
ContributorsBurke, Rebekah (Author) / Parrish, Kristen (Thesis advisor) / Gibson, G. Edward (Committee member) / Allenby, Braden (Committee member) / Arizona State University (Publisher)
Created2018
187430-Thumbnail Image.png
Description
Infrastructure managers are continually challenged to reorient their organizations to mitigate disturbances. Disturbances to infrastructure constantly intensify, and the world and its intricate systems are becoming more connected and complex. This complexity often leads to disturbances and cascading failures. Some of these events unfold in extreme ways previously unimagined (i.e.,

Infrastructure managers are continually challenged to reorient their organizations to mitigate disturbances. Disturbances to infrastructure constantly intensify, and the world and its intricate systems are becoming more connected and complex. This complexity often leads to disturbances and cascading failures. Some of these events unfold in extreme ways previously unimagined (i.e., Black Swan events). Infrastructure managers currently seek pathways through this complexity. To this end, reimagined – multifaceted – definitions of resilience must inform future decisions. Moreover, the hazardous environment of the Anthropocene demands flexibility and dynamic reprioritization of infrastructure and resources during disturbances. In this dissertation, the introduction will briefly explain foundational concepts, frameworks, and models that will inform the rest of this work. Chapter 2 investigates the concept of dynamic criticality: the skill to reprioritize amidst disturbances, repeating this process with each new disturbance. There is a dearth of insight requisite skillsets for infrastructure organizations to attain dynamic criticality. Therefore, this dissertation searches other industries and finds goals, structures, sensemaking, and strategic best practices to propose a contextualized framework for infrastructure. Chapters 3 and 4 seek insight into modeling infrastructure interdependencies and cascading failure to elucidate extreme outcomes such as Black Swans. Chapter 3 explores this concept through a theoretical analysis considering the use of realistic but fictional (i.e., synthetic) models to simulate interdependent behavior and cascading failures. This chapter also discusses potential uses of synthetic networks for infrastructure resilience research and barriers to future success. Chapter 4 tests the preceding theoretical analysis with an empirical study. Chapter 4 builds realistic networks with dependency between power and water models and simulates cascading failure. The discussion considers the future application of similar modeling efforts and how these techniques can help infrastructure managers scan the horizon for Black Swans. Finally, Chapter 5 concludes the dissertation with a synthesis of the findings from the previous chapters, discusses the boundaries and limitations, and proposes inspirations for future work.
ContributorsHoff, Ryan Michael (Author) / Chester, Mikhail V (Thesis advisor) / Allenby, Braden (Committee member) / Johnson, Nathan (Committee member) / McPhearson, Timon (Committee member) / Arizona State University (Publisher)
Created2023
157905-Thumbnail Image.png
Description
Raising future generations is a culturally diverse, universally technological human project. This research brought the everyday work of raising children into the domain of sustainability scholarship, by first proposing a model of childrearing as a globally distributed socio-technical system, and then exploring the model with participants in two nodes –

Raising future generations is a culturally diverse, universally technological human project. This research brought the everyday work of raising children into the domain of sustainability scholarship, by first proposing a model of childrearing as a globally distributed socio-technical system, and then exploring the model with participants in two nodes – an elementary and middle school, and a children’s museum. In the process, the research objective shifted towards using methods that were less academic and more relevant to childrearing agents. The focus on participatory survey data was abandoned, in favor of autoethnographic documentation of a long-term engagement with a third node of the system, a child welfare setting. This approach yielded unexpected findings that fit the proposed model, identified characteristics of a Zone of Mutual Oblivion (ZMO) that exists between childrearing and sustainability, and clarified ways in which people prioritize their own needs and responsibilities, the developmental needs of children, the potential needs and capacities of future generations, and the functional integrity of ecological systems.
ContributorsCazel-Jahn, Angela (Author) / Blue Swadener, Elizabeth (Thesis advisor) / Allenby, Braden (Committee member) / Lobo, Jose (Committee member) / Arizona State University (Publisher)
Created2019