Matching Items (2)
Filtering by

Clear all filters

171577-Thumbnail Image.png
Description
Trichloroethene (TCE) and hexavalent chromium (Cr (VI)) are ubiquitous subsurface contaminants affecting the water quality and threatening human health. Microorganisms capable of TCE and Cr (VI) reductions can be explored for bioremediation at contaminated sites. The goal of my dissertation research was to address challenges that decrease the

Trichloroethene (TCE) and hexavalent chromium (Cr (VI)) are ubiquitous subsurface contaminants affecting the water quality and threatening human health. Microorganisms capable of TCE and Cr (VI) reductions can be explored for bioremediation at contaminated sites. The goal of my dissertation research was to address challenges that decrease the efficiency of bioremediation in the subsurface. Specifically, I investigated strategies to (i) promote improve microbial reductive dechlorination extent through the addition of Fe0 and (ii) Cr (VI) bio-reduction through enrichment of specialized microbial consortia. Fe0 can enhance microbial TCE reduction by inducing anoxic conditions and generating H2 (electron donor). I first evaluated the effect of Fe0 on microbial reduction of TCE (with ClO4– as co-contaminant) using semi-batch soil microcosms. Results showed that high concentration of Fe0 expected during in situ remediation inhibited microbial TCE and ClO4– reduction when added together with Dehalococcoides mccartyi-containing cultures. A low concentration of aged Fe0 enhanced microbial TCE dechlorination to ethene and supported complete microbial ClO4– reduction. I then evaluated a decoupled Fe0 and biostimulation/bioaugmentation treatment approach using soil packed columns with continuous flow of groundwater. I demonstrated that microbial TCE reductive dechlorination to ethene can be benefitted by Fe0 abiotic reactions, when biostimulation and bioaugmentation are performed downstream of Fe0 addition. Furthermore, I showed that ethene production can be sustained in the presence of aerobic groundwater (after Fe0 exhaustion) by the addition of organic substrates. I hypothesized that some lessons learned from TCE Bioremediation can be applied also for other pollutants that can benefit from anaerobic reductions, like Cr (VI). Bioremediation of Cr (VI) has historically relied on biostimulation of native microbial communities, partially due to the lack of knowledge of the benefits of adding enriched consortia of specialized microorganisms (bioaugmentation). To determine the merits of a specialized consortium on bio-reduction of Cr (VI), I first enriched a culture on lactate and Cr (VI). The culture had high abundance of putative Morganella species and showed rapid and sustained Cr (VI) bio-reduction compared to a subculture grown with lactate only (without Morganella). Overall, this dissertation work documents possible strategies for synergistic abiotic and biotic chlorinated ethenes reduction, and highlights that specialized consortia may benefit Cr (VI) bio-reduction.
ContributorsMohana Rangan, Srivatsan (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Delgado, Anca G (Thesis advisor) / Torres, César I (Committee member) / van Paassen, Leon (Committee member) / Arizona State University (Publisher)
Created2022
161243-Thumbnail Image.png
Description
Water is a vital resource, and its protection is a priority world-wide. One widespread threat to water quality is contamination by chlorinated solvents. These dry-cleaning and degreasing agents entered the watershed through spills and improper disposal and now are detected in 4% of U.S. aquifers and 4.5-18% of U.S.

Water is a vital resource, and its protection is a priority world-wide. One widespread threat to water quality is contamination by chlorinated solvents. These dry-cleaning and degreasing agents entered the watershed through spills and improper disposal and now are detected in 4% of U.S. aquifers and 4.5-18% of U.S. drinking water sources. The health effects of these contaminants can be severe, as they are associated with damage to the nervous, liver, kidney, and reproductive systems, developmental issues, and possibly cancer. Chlorinated solvents must be removed or transformed to improve water quality and protect human and environmental health. One remedy, bioaugmentation, the subsurface addition of microbial cultures able to transform contaminants, has been implemented successfully at hundreds of sites since the 1990s. Bioaugmentation uses the bacteria Dehalococcoides to transform chlorinated solvents with hydrogen, H2, as the electron donor. At advection limited sites, bioaugmentation can be combined with electrokinetics (EK-Bio) to enhance transport. However, challenges for successful bioremediation remain. In this work I addressed several knowledge gaps surrounding bioaugmentation and EK-Bio. I measured the H2 consuming capacity of soils, detailed the microbial metabolisms driving this demand, and evaluated how these finding relate to reductive dechlorination. I determined which reactions dominated at a contaminated site with mixed geochemistry treated with EK-Bio and compared it to traditional bioaugmentation. Lastly, I assessed the effect of EK-Bio on the microbial community at a field-scale site. Results showed the H2 consuming capacity of soils was greater than that predicted by initial measurements of inorganic electron acceptors and primarily driven by carbon-based microbial metabolisms. Other work demonstrated that, given the benefits of some carbon-based metabolisms to microbial reductive dechlorination, high levels of H2 consumption in soils are not necessarily indicative of hostile conditions for Dehalococcoides. Bench-scale experiments of EK-Bio under mixed geochemical conditions showed EK-Bio out-performed traditional bioaugmentation by facilitating biotic and abiotic transformations. Finally, results of microbial community analysis at a field-scale implementation of EK-Bio showed that while there were significant changes in alpha and beta diversity, the impact of EK-Bio on native microbial communities was minimal.
ContributorsAltizer, Megan Leigh (Author) / Torres, César I (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Rittmann, Bruce E (Committee member) / Kavazanjian, Edward (Committee member) / Delgado, Anca G (Committee member) / Arizona State University (Publisher)
Created2020