Matching Items (10)
Filtering by

Clear all filters

136689-Thumbnail Image.png
Description
This paper explores women and bicycling, with the focus of looking at how to get more women onto the bicycle in Tempe, Arizona. The main areas of interest for this study are improvements to bicycling infrastructure and an increase in the safety and the perception of safety of women cyclists

This paper explores women and bicycling, with the focus of looking at how to get more women onto the bicycle in Tempe, Arizona. The main areas of interest for this study are improvements to bicycling infrastructure and an increase in the safety and the perception of safety of women cyclists in the Tempe area. In order to explore this topic, an online survey of 75 Arizona State students was conducted. From the results women were primarily concerned with their safety due to the condition of the overall infrastructure and the lack of bicycle related improvements. Research such as this that examines women and cycling is significant due to the current underrepresentation of women in the cycling community and has the potential to improve safety and increase bicycle ridership.
ContributorsStarr, Nicole (Author) / Kelley, Jason (Thesis director) / Golub, Aaron (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / School of Sustainability (Contributor)
Created2014-12
136399-Thumbnail Image.png
Description
Defines the concept of the arcology as conceived by architect Paolo Soleri. Arcology combines "architecture" and "ecology" and explores a visionary notion of a self-contained urban community that has agricultural, commercial, and residential facilities under one roof. Two real-world examples of these projects are explored: Arcosanti, AZ and Masdar City,

Defines the concept of the arcology as conceived by architect Paolo Soleri. Arcology combines "architecture" and "ecology" and explores a visionary notion of a self-contained urban community that has agricultural, commercial, and residential facilities under one roof. Two real-world examples of these projects are explored: Arcosanti, AZ and Masdar City, Abu Dhabi, UAE. Key aspects of the arcology that could be applied to an existing urban fabric are identified, such as urban design fostering social interaction, reduction of automobile dependency, and a development pattern that combats sprawl. Through interviews with local representatives, a holistic approach to applying arcology concepts to the Phoenix Metro Area is devised.
ContributorsSpencer, Sarah Anne (Author) / Manuel-Navarrete, David (Thesis director) / Salon, Deborah (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Sustainability (Contributor)
Created2015-05
137183-Thumbnail Image.png
Description
City planners often use bicycle friendly rating schemes as tools to guide them in their efforts to establish a bicycle community. However, the criteria and methodologies used vary from program to program and often do not encapsulate all of the necessary elements that comprise true bicycle friendliness. This report documents

City planners often use bicycle friendly rating schemes as tools to guide them in their efforts to establish a bicycle community. However, the criteria and methodologies used vary from program to program and often do not encapsulate all of the necessary elements that comprise true bicycle friendliness. This report documents the important elements, strategies, and best practices that well-established Dutch, Danish, and German bike friendly cities exhibit to create a baseline standard for bicycle friendliness. Not all rating programs' criteria and methodologies align perfectly within this understanding of bicycle friendliness. City planners should use these programs as tools while keeping their limitations in consideration. The City of Tempe currently uses the League of American Bicyclists Bicycle Friendly Community program and BikeScore.com. By understanding the limitations associated with these programs, Tempe should move forward in their pursuit of bicycle friendliness by using multiple rating programs simultaneously and by looking at top-rated cities' strategies to enhance their infrastructure, network, urban form, and biking culture.
ContributorsTrombino, Frank Michael (Author) / Golub, Aaron (Thesis director) / Kelley, Jason (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Sustainability (Contributor)
Created2014-05
Description

Public transit systems are often accepted as energy and environmental improvements to automobile travel, however, few life cycle assessments exist to understand the effects of implementation of transit policy decisions. To better inform decision-makers, this project evaluates the decision to construct and operate public transportation systems and the expected energy

Public transit systems are often accepted as energy and environmental improvements to automobile travel, however, few life cycle assessments exist to understand the effects of implementation of transit policy decisions. To better inform decision-makers, this project evaluates the decision to construct and operate public transportation systems and the expected energy and environmental benefits over continued automobile use. The public transit systems are selected based on screening criteria. Initial screening included advanced implementation (5 to 10 years so change in ridership could be observed), similar geographic regions to ensure consistency of analysis parameters, common transit agencies or authorities to ensure a consistent management culture, and modes reflecting large infrastructure investments to provide an opportunity for robust life cycle assessment of large impact components. An in-depth screening process including consideration of data availability, project age, energy consumption, infrastructure information, access and egress information, and socio-demographic characteristics was used as the second filter. The results of this selection process led to Los Angeles Metro’s Orange and Gold lines.

In this study, the life cycle assessment framework is used to evaluate energy inputs and emissions of greenhouse gases, particulate matter (10 and 2.5 microns), sulfur dioxide, nitrogen oxides, volatile organic compounds, and carbon monoxide. For the Orange line, Gold line, and competing automobile trip, an analysis system boundary that includes vehicle, infrastructure, and energy production components is specified. Life cycle energy use and emissions inventories are developed for each mode considering direct (vehicle operation), ancillary (non-vehicle operation including vehicle maintenance, infrastructure construction, infrastructure operation, etc.), and supply chain processes and services. In addition to greenhouse gas emissions, the inventories are linked to their potential for respiratory impacts and smog formation, and the time it takes to payback in the lifetime of each transit system.

Results show that for energy use and greenhouse gas emissions, the inclusion of life cycle components increases the footprint between 42% and 91% from vehicle propulsion exclusively. Conventional air emissions show much more dramatic increases highlighting the effectiveness of “tailpipe” environmental policy. Within the life cycle, vehicle operation is often small compared to other components. Particulate matter emissions increase between 270% and 5400%. Sulfur dioxide emissions increase by several orders of magnitude for the on road modes due to electricity use throughout the life cycle. NOx emissions increase between 31% and 760% due to supply chain truck and rail transport. VOC emissions increase due to infrastructure material production and placement by 420% and 1500%. CO emissions increase by between 20% and 320%. The dominating contributions from life cycle components show that the decision to build an infrastructure and operate a transportation mode in Los Angeles has impacts far outside of the city and region. Life cycle results are initially compared at each system’s average occupancy and a breakeven analysis is performed to compare the range at which modes are energy and environmentally competitive.

The results show that including a broad suite of energy and environmental indicators produces potential tradeoffs that are critical to decision makers. While the Orange and Gold line require less energy and produce fewer greenhouse gas emissions per passenger mile traveled than the automobile, this ordering is not necessarily the case for the conventional air emissions. It is possible that a policy that focuses on one pollutant may increase another, highlighting the need for a broad set of indicators and life cycle thinking when making transportation infrastructure decisions.

Description

This project was inspired by Dr. Kelli L. Larson’s research which disproved three common landscaping misconceptions in the Phoenix Valley. The first misconception states that newcomers, not long-time Phoenicians more often have and prefer grassy lawns instead of xeric, desert-adapted landscapes when actually the opposite is true. Secondly, the rise

This project was inspired by Dr. Kelli L. Larson’s research which disproved three common landscaping misconceptions in the Phoenix Valley. The first misconception states that newcomers, not long-time Phoenicians more often have and prefer grassy lawns instead of xeric, desert-adapted landscapes when actually the opposite is true. Secondly, the rise in xeric landscapes is not due to personal choice but rather a variety of other factors such as developer decisions. Finally, Dr. Larson’s research also disproves the assumption that people who possess pro-environmental attitudes correspondingly demonstrate sustainable landscaping behavior, and finds that people with those attitudes actually tend to irrigate more frequently in the winter months. Debunking these misconceptions is important because the long-term impacts of global climate change could have effects on water use in the desert southwest, and promoting water conservation in urban residential landscaping is an important step in the creation of sustainable water use policy. <br/><br/>The goal of my project was to make this information more accessible to broader public audiences who may not have access to it outside of research circles. I decided to create a zine, a small batch, hand-made mini-magazine, centered around disproving these myths so that the information could be distributed to broader audiences. I conducted informal stakeholder interviews to inform my design in order to appeal to those audiences, and constructed a 16-page booklet which debunked the myths and encouraged critical thinking about individual water use and urban landscaping habits. The zine included hand-painted illustrations and was constructed as a physical copy with the intention of eventually copying and distributing both a physical and digital version. The purpose of this project is to create a way of accessing reliable information about urban landscaping for residents of the Phoenix Valley, where the climate and geography necessitate water conservation.

ContributorsThompson, Camryn Elizabeth (Author) / Larson, Kelli L. (Thesis director) / Foushée, Danielle (Committee member) / School of Sustainability (Contributor) / The Design School (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
141377-Thumbnail Image.png
Description

Urban green space is purported to offset greenhouse‐gas (GHG) emissions, remove air and water pollutants, cool local climate, and improve public health. To use these services, municipalities have focused efforts on designing and implementing ecosystem‐services‐based “green infrastructure” in urban environments. In some cases the environmental benefits of this infrastructure have

Urban green space is purported to offset greenhouse‐gas (GHG) emissions, remove air and water pollutants, cool local climate, and improve public health. To use these services, municipalities have focused efforts on designing and implementing ecosystem‐services‐based “green infrastructure” in urban environments. In some cases the environmental benefits of this infrastructure have been well documented, but they are often unclear, unquantified, and/or outweighed by potential costs. Quantifying biogeochemical processes in urban green infrastructure can improve our understanding of urban ecosystem services and disservices (negative or unintended consequences) resulting from designed urban green spaces. Here we propose a framework to integrate biogeochemical processes into designing, implementing, and evaluating the net effectiveness of green infrastructure, and provide examples for GHG mitigation, stormwater runoff mitigation, and improvements in air quality and health.

ContributorsPataki, Diane E. (Author) / Carreiro, Margaret M. (Author) / Cherrier, Jennifer (Author) / Grulke, Nancy E. (Author) / Jennings, Viniece (Author) / Pincetl, Stephanie Sabine, 1952- (Author) / Pouyat, Richard V. (Author) / Whitlow, Thomas H. (Author) / Zipperer, Wayne C. (Author)
Created2011-02-01
Description

There are unfortunately very few curricular guides that focus on community engagement within the higher education of landscape architecture. A Beginner’s Guide to Community Engagement in the Curriculum of Landscape Architecture and Urban Planning to Improve Social Justice and Sustainability helps resolve this issue and serves as a resource to

There are unfortunately very few curricular guides that focus on community engagement within the higher education of landscape architecture. A Beginner’s Guide to Community Engagement in the Curriculum of Landscape Architecture and Urban Planning to Improve Social Justice and Sustainability helps resolve this issue and serves as a resource to students, educators, designers, and more. The guide centralizes a diverse collection of resources, guides students through learning materials, shares insight, and proposes potential community engagement methods. The booklet aims to help readers understand the importance of community engagement in design and shares different curricular approaches to introduce the work to students.

ContributorsNeeson, Margaret (Author) / Cheng, Chingwen (Thesis director) / Coseo, Paul (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / The Design School (Contributor)
Created2023-05
131651-Thumbnail Image.png
Description
This thesis explores the role and meaning of community in the community land trust (CLT) model, and uses a single embedded case study to examine the mission, organizational structure, and governance model of Newtown CDC, a CLT based in Phoenix, Arizona. The thesis seeks to answer the questions, “What does

This thesis explores the role and meaning of community in the community land trust (CLT) model, and uses a single embedded case study to examine the mission, organizational structure, and governance model of Newtown CDC, a CLT based in Phoenix, Arizona. The thesis seeks to answer the questions, “What does community participation and empowerment mean to Newtown CDC”, and “how does the organization satisfy the competing needs of community participation and affordable housing production?” Historical documents of Newtown CDC, interviews with CLT staff, board members, and national policy representatives, as well as a survey of current and former CLT residents, reveal the perceived meaning and role of community, its evolution, and successes and failures in engaging the community. The data finds that a change in political and cultural dynamics has contributed to more resources focused on developing affordable housing, and less focus on community engagement. CLTs have adapted to this change, and the role and execution of community engagement has also evolved.
ContributorsSubbaraman, Sree Manasvini (Author) / Ehlenz, Meagan (Thesis director) / Brewer, Stephanie (Committee member) / School of Geographical Sciences and Urban Planning (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
130874-Thumbnail Image.png
Description
This research project is part of a larger study of green infrastructure in urban planning and sustainability initiatives in cities across the U.S. Within the past few decades, the topic of sustainability has been at the forefront of city planners’ minds as cities grow, there is new or redevelopment, and

This research project is part of a larger study of green infrastructure in urban planning and sustainability initiatives in cities across the U.S. Within the past few decades, the topic of sustainability has been at the forefront of city planners’ minds as cities grow, there is new or redevelopment, and the threat of climate change and future climate variability increases. Green infrastructure is one increasingly popular urban sustainability strategy, which is widely promoted for its ability to provide multiple benefits. This multi-functionality translates into ecosystem services and possible disservices for a local community and the city as a whole. This research project examines 120 planning documents from 19 U.S. cities to examine whether the services cities say they expect green infrastructure to provide, or the rationale, match with the criteria used to determine where green infrastructure is sited. For this project, we ask: what are the rationales that cities provide for developing green infrastructure and what are the criteria cities are using to determine where to site it? We find that certain rationales, or benefits, are claimed without corresponding and specific siting criteria to substantiate how these benefits will be achieved, while other benefits, like those related to stormwater management, are prioritized over other potentially important benefits.
ContributorsColeman, Emma Ciara (Author) / Meerow, Sara (Thesis director) / Hoover, Fushcia-Ann (Committee member) / School of Molecular Sciences (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
164894-Thumbnail Image.png
Description
In urban planning and design, creating emotional bonds, known as place identity, between people and their surroundings is paramount to improving the well-being of those who reside there. However, determining how to alter the built environment in order to increase place identity is a difficult task to achieve. Walkability is

In urban planning and design, creating emotional bonds, known as place identity, between people and their surroundings is paramount to improving the well-being of those who reside there. However, determining how to alter the built environment in order to increase place identity is a difficult task to achieve. Walkability is a good mechanistic link between the built environment and place identity. Walkability is comprised of a suite of factors that take into consideration both the natural and built environment. This thesis aims to determine if walkability is positively correlated with place identity in an extreme climate such as Phoenix. To test this, ecosystem services and disservices are used as factors to measure overall walkability. We found that access to recreational opportunities, aesthetic features of the pathway, and safety were all significant predictors of place identity. This has positive implications for walkable infrastructure to be strengthened in desert cities.
ContributorsSiefert, Janelle (Author) / Larson, Kelli (Thesis director) / Kelley, Jason (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Sustainability (Contributor) / Watts College of Public Service & Community Solut (Contributor)
Created2022-05