Matching Items (32)
102-Thumbnail Image.png
Description

The leading source of weather-related deaths in the United States is heat, and future projections show that the frequency, duration, and intensity of heat events will increase in the Southwest. Presently, there is a dearth of knowledge about how infrastructure may perform during heat waves or could contribute to social

The leading source of weather-related deaths in the United States is heat, and future projections show that the frequency, duration, and intensity of heat events will increase in the Southwest. Presently, there is a dearth of knowledge about how infrastructure may perform during heat waves or could contribute to social vulnerability. To understand how buildings perform in heat and potentially stress people, indoor air temperature changes when air conditioning is inaccessible are modeled for building archetypes in Los Angeles, California, and Phoenix, Arizona, when air conditioning is inaccessible is estimated.

An energy simulation model is used to estimate how quickly indoor air temperature changes when building archetypes are exposed to extreme heat. Building age and geometry (which together determine the building envelope material composition) are found to be the strongest indicators of thermal envelope performance. Older neighborhoods in Los Angeles and Phoenix (often more centrally located in the metropolitan areas) are found to contain the buildings whose interiors warm the fastest, raising particular concern because these regions are also forecast to experience temperature increases. To combat infrastructure vulnerability and provide heat refuge for residents, incentives should be adopted to strategically retrofit buildings where both socially vulnerable populations reside and increasing temperatures are forecast.

Created2015
187618-Thumbnail Image.png
Description

Cities are experiencing rapid warming due to the urban heat island (UHI) effect, which causes the city center to have higher air temperatures than the surrounding rural areas. This dissertation studies the effects of building design on the surrounding environment, particularly for heat release.The first paper in this dissertation (Chapter

Cities are experiencing rapid warming due to the urban heat island (UHI) effect, which causes the city center to have higher air temperatures than the surrounding rural areas. This dissertation studies the effects of building design on the surrounding environment, particularly for heat release.The first paper in this dissertation (Chapter 2) quantifies the anthropogenic heat emissions from buildings and focuses on an archetype office building, the study is considering four U.S. cities with different climates. The results demonstrate that the building envelope is the main contributor to heat emission from a building, accounting for over 60% of the total heat emission in all cities for four-story buildings. Additionally, the study finds that substituting bare terrain with a constructed building increases sensed heat by more than 70% in all cities and building heights. The second paper (Chapter 3) of this dissertation identifies the key design variables that affect heat emissions and energy consumption in buildings. The study considers 15 U.S. cities that represents all 15 climate zones as defined by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). 10 design variables known for their impacts on energy consumption were identified via a literature review and used in the analysis. The results show that the window-to-wall ratio (WWR) consistently has a strong correlation with energy consumption in all climate zones. Roof and wall solar reflectance variables showed a very strong correlation with heat emissions from a building. The final paper of this dissertation (Chapter 4) presents the results of a survey distributed to experts in the architectural field, to evaluate the importance of different design variables that are related to heat emission and energy consumption. The survey also assessed the importance of considering heat emission as a design criterion during the design process when compared to energy consumption. These survey results provide new insights into how heat emission can be incorporated into the early design process. The dissertation then highlights the difference found via the survey results from the expert with the simulation results to identify the key design variable that relates to both heat emission and energy consumption.

ContributorsAlhazmi, Mansour (Author) / Yeom, Dongwoo (Thesis advisor) / Sailor, David (Committee member) / Sanguinetti, Paola (Committee member) / Arizona State University (Publisher)
Created2023