Matching Items (389)
ContributorsWard, Geoffrey Harris (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-18
152041-Thumbnail Image.png
Description
The characteristics of the wintertime 500hPa height surface, the level of non-divergence and used for identifying/observing synoptic-scale features (ridges and troughs), and their impact on precipitation are of significance to forecasters, natural resource managers and planners across the southwestern United States. For this study, I evaluated the location of the

The characteristics of the wintertime 500hPa height surface, the level of non-divergence and used for identifying/observing synoptic-scale features (ridges and troughs), and their impact on precipitation are of significance to forecasters, natural resource managers and planners across the southwestern United States. For this study, I evaluated the location of the 500hPa mean Pacific ridge axis over the winter for the period of 1948/49 to 2011/12 and derived the mean ridge axis in terms of location (longitude) and intensity (geopotential meters) from the NCEP/NCAR Reanalysis dataset. After deriving a mean ridge axis climatology and analyzing its behavior over time, I correlated mean location and intensity values to observed wintertime precipitation in select U.S. Climate Divisions in Arizona, Colorado, Nevada, Utah and New Mexico. This resulted in two findings. First specific to the 500hPa ridge behavior, the ridge has been moving eastward and also has been intensifying through time. Second, results involving correlation tests between mean ridge location and intensity indicate precipitation across the selected Southwest Climate Divisions are strongly related to mean ridge intensity slightly more than ridge location. The relationships between mean ridge axis and observed precipitation also are negative, indicating an increase of one of the ridge parameters (i.e. continued eastward movement or intensification) lead to drier winter seasons across the Southwest. Increased understanding of relationships between upper-level ridging and observed wintertime precipitation aids in natural resource planning for an already arid region that relies heavily on winter precipitation.
ContributorsNolte, Jessica Marie (Author) / Cerveny, Randall S. (Thesis advisor) / Selover, Nancy J. (Committee member) / Brazel, Anthony J. (Committee member) / Arizona State University (Publisher)
Created2013
Description

Our study calculates the estimated difference in water use, energy demands, and CO2 emissions of head lettuce associated with the production (land preparation and growing operations, chemical inputs, irrigation) and the transportation (diesel demand) to the Phoenix metro area from:
       1. A local level, defined here as within Maricopa

Our study calculates the estimated difference in water use, energy demands, and CO2 emissions of head lettuce associated with the production (land preparation and growing operations, chemical inputs, irrigation) and the transportation (diesel demand) to the Phoenix metro area from:
       1. A local level, defined here as within Maricopa County, Arizona (AZ).
       2. From the central coast of California (CA) in Monterey County.

Our research results demonstrate that local lettuce is more resource intensive than non-local or regional produce. Production in Maricopa County has significantly higher (more than double) energy demands and emissions than Monterey County. Irrigation and chemical inputs are the greatest contributors to energy demand in Maricopa, but it is primarily irrigation that contributes to emissions. Comparatively, transportation and chemical inputs are the greatest contributors to energy demand in Monterey, and it is primarily transportation that contributes to emissions.

This life cycle inventory suggests that we need to reconsider the “food miles” framing of the local food debate and whether local food production is a viable sustainable alternative to the current food system in the arid Southwest. However, we also recognize that factors beyond resource-use and emissions affect policymakers’ and consumers’ demands for local foods. Future studies ought to provide a more nuanced look at the issue that also includes social, psychological, and economic factors that influence food policies and purchases. These results have important implications for future water management and suggest the need to pursue more water efficient practices in AZ.

Created2012-05
ContributorsBolari, John (Performer) / ASU Library. Music Library (Publisher)
Created2018-10-04
ContributorsOftedahl, Paul (Performer) / ASU Library. Music Library (Publisher)
Created2018-09-29
ContributorsMarshall, Kimberly (Performer) / Meszler, Alexander (Performer) / Yatso, Toby (Narrator) / ASU Library. Music Library (Publisher)
Created2018-09-16
ContributorsTaylor, Karen Stephens (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-21
ContributorsCramer, Craig (Performer) / ASU Library. Music Library (Publisher)
Created1997-02-16
ContributorsMarshall, Kimberly (Performer) / ASU Library. Music Library (Publisher)
Created2019-03-17
ContributorsCampbell, Jeffrey (Performer) / ASU Library. Music Library (Publisher)
Created2005-10-23