Matching Items (5)

Methodology for Estimating Electricity Generation Vulnerability to Climate Change Using a Physically-based Modelling System

Description

In recent years, concerns have grown over the risks posed by climate change on the U.S. electricity grid. The availability of water resources is integral to the production of electric

In recent years, concerns have grown over the risks posed by climate change on the U.S. electricity grid. The availability of water resources is integral to the production of electric power, and droughts are expected to become more frequent, severe, and longer-lasting over the course of the twenty-first century. The American Southwest, in particular, is expected to experience large deficits in streamflow. Studies on the Colorado River anticipate streamflow declines of 20-45% by 2050. Other climactic shifts—such as higher water and air temperatures—may also adversely affect power generation. As extreme weather becomes more common, better methods are needed to assess the impact of climate change on power generation. This study uses a physically-based modeling system to assess the vulnerability of power infrastructure in the Southwestern United States at a policy-relevant scale.

Thermoelectric power—which satisfies a majority of U.S. electricity demand—is vulnerable to drought. Thermoelectric power represents the backbone of the U.S. power sector, accounting for roughly 91% of generation. Thermoelectric power also accounts for roughly 39% of all water withdrawals in the U.S.—roughly equivalent to the amount of water used for agriculture. Water use in power plants is primarily dictated by the needs of the cooling system. During the power generation process, thermoelectric power plants build up waste heat, which must be discharged in order for the generation process to continue. Traditionally, water is used for this purpose, because it is safe, plentiful, and can absorb a large amount of heat. However, when water availability is constrained, power generation may also be adversely affected. Thermoelectric power plants are particularly susceptible to changes in streamflow and water temperature. These vulnerabilities are exacerbated by environmental regulations, which govern both the amount of water withdrawn, and the temperatures of the water discharged. In 2003, extreme drought and heat impaired the generating capacity of more than 30 European nuclear power plants, which were unable to comply with environmental regulations governing discharge temperatures. Similarly, many large base-load thermoelectric facilities in the Southeastern United States were threatened by a prolonged drought in 2007 and 2008. During this period, the Tennessee Valley Authority (TVA) reduced generation at several facilities, and one major facility was shut down entirely. To meet demand, the TVA was forced to purchase electricity from the grid, causing electricity prices to rise.

Although thermoelectric power plants currently produce most of the electric power consumed in the United States, other sources of power are also vulnerable to changes in climate. Renewables are largely dependent on natural resources like rain, wind, and sunlight. As the quantity and distribution of these resources begins to change, renewable generation is also likely to be affected. Hydroelectric dams represent the largest source of renewable energy currently in use throughout the United States. Under drought conditions, when streamflow attenuates and reservoir levels drop, hydroelectric plants are unable to operate at normal capacity. In 2001, severe drought in California and the Pacific Northwest restricted hydroelectric power generation, causing a steep increase in electricity prices. Although blackouts and brownouts were largely avoided, the Northwest Power and Conservation Council estimated a regional economic impact of roughly $2.5 to $6 billion. In addition to hydroelectric power, it has also been theorized that solar energy resources may also be susceptible to predicted increases in surface temperature and atmospheric albedo. One study predicts that solar facilities in the Southwestern U.S. may suffer losses of 2-5%.

The aim of this study is to estimate the extent to which climate change may impact power generation in the Southwestern United States. This analysis will focus on the Western Interconnection, which comprises the states of Washington, Oregon, California, Idaho, Nevada, Utah, Arizona, Colorado, Wyoming, Montana, South Dakota, New Mexico and Texas. First, climactic and hydrologic parameters relevant to power generation are identified for five types of generation technologies. A series of functional relationships are developed such that impacts to power generation can be estimated directly from changes in certain meteorological and hydrological parameters. Next, climate forcings from the CMIP3 multi-model ensemble are used as inputs to a physically-based modeling system (consisting of a hydrological model, an offline routing model, and a one-dimensional stream temperature model). The modeling system is used to estimate changes in climactic and hydrologic parameters relevant to electricity generation for various generation technologies. Climactic and hydrologic parameters are then combined with the functional relationships developed in the first step to estimate impacts to power generation over the twenty-first century.

Contributors

Forecasting Changes in Urban Heat Island in the US Southwest

Description

Recent developments in computational software and public accessibility of gridded climatological data have enabled researchers to study Urban Heat Island (UHI) effects more systematically and at a higher spatial resolution.

Recent developments in computational software and public accessibility of gridded climatological data have enabled researchers to study Urban Heat Island (UHI) effects more systematically and at a higher spatial resolution. Previous studies have analyzed UHI and identified significant contributors at the regional level for cities, within the topology of urban canyons, and for different construction materials.

In UHIs, air is heated by the convective energy transfer from land surface materials and anthropogenic activities. Convection is dependent upon the temperature of the surface, temperature of the air, wind speed, and relative humidity. At the same time, air temperature is also influenced by greenhouse gases (GHG) in the atmosphere. Climatologists project a 1-5°C increase in near-surface air temperature over the next several decades, and 1-4°C specifically for Los Angeles and Maricopa during summertime due to GHG effects. With higher ambient air temperatures, we seek to understand how convection will change in cities and to what ends.

In this paper we develop a spatially explicit methodology for quantifying UHI by estimating the daily convection thermal energy transfer from land to air using publicly-available gridded climatological data, and we estimate how much additional energy will be retained due to lack of convective cooling in scenarios of higher ambient air temperature.

Contributors

Vulnerability Assessment of Southwest Infrastructure to Increased Heat Using a Life Cycle Approach

Description

As average temperatures and occurrences of extreme heat events increase in the Southwest, the water infrastructure that was designed to operate under historical temperature ranges may become increasingly vulnerable to

As average temperatures and occurrences of extreme heat events increase in the Southwest, the water infrastructure that was designed to operate under historical temperature ranges may become increasingly vulnerable to component and operational failures. For each major component along the life cycle of water in an urban water infrastructural system, potential failure events and their semi-quantitative probabilities of occurrence were estimated from interview responses of water industry professionals. These failure events were used to populate event trees to determine the potential pathways to cascading failures in the system. The probabilities of the cascading failure scenarios under future conditions were then calculated and compared to the probabilities of scenarios under current conditions to assess the increased vulnerability of the system. We find that extreme heat events can increase the vulnerability of water systems significantly and that there are ways for water infrastructure managers to proactively mitigate these vulnerabilities before problems occur.

Contributors

Is Local More Sustainable in Phoenix, Arizona?

Description

Our study calculates the estimated difference in water use, energy demands, and CO2 emissions of head lettuce associated with the production (land preparation and growing operations, chemical inputs, irrigation) and

Our study calculates the estimated difference in water use, energy demands, and CO2 emissions of head lettuce associated with the production (land preparation and growing operations, chemical inputs, irrigation) and the transportation (diesel demand) to the Phoenix metro area from:
       1. A local level, defined here as within Maricopa County, Arizona (AZ).
       2. From the central coast of California (CA) in Monterey County.

Our research results demonstrate that local lettuce is more resource intensive than non-local or regional produce. Production in Maricopa County has significantly higher (more than double) energy demands and emissions than Monterey County. Irrigation and chemical inputs are the greatest contributors to energy demand in Maricopa, but it is primarily irrigation that contributes to emissions. Comparatively, transportation and chemical inputs are the greatest contributors to energy demand in Monterey, and it is primarily transportation that contributes to emissions.

This life cycle inventory suggests that we need to reconsider the “food miles” framing of the local food debate and whether local food production is a viable sustainable alternative to the current food system in the arid Southwest. However, we also recognize that factors beyond resource-use and emissions affect policymakers’ and consumers’ demands for local foods. Future studies ought to provide a more nuanced look at the issue that also includes social, psychological, and economic factors that influence food policies and purchases. These results have important implications for future water management and suggest the need to pursue more water efficient practices in AZ.

Contributors

Created

Date Created
  • 2012-05

152041-Thumbnail Image.png

The 500hPa wintertime Pacific ridge: characteristics of position and intensity and its influence on Southwest U.S. precipitation

Description

The characteristics of the wintertime 500hPa height surface, the level of non-divergence and used for identifying/observing synoptic-scale features (ridges and troughs), and their impact on precipitation are of significance to

The characteristics of the wintertime 500hPa height surface, the level of non-divergence and used for identifying/observing synoptic-scale features (ridges and troughs), and their impact on precipitation are of significance to forecasters, natural resource managers and planners across the southwestern United States. For this study, I evaluated the location of the 500hPa mean Pacific ridge axis over the winter for the period of 1948/49 to 2011/12 and derived the mean ridge axis in terms of location (longitude) and intensity (geopotential meters) from the NCEP/NCAR Reanalysis dataset. After deriving a mean ridge axis climatology and analyzing its behavior over time, I correlated mean location and intensity values to observed wintertime precipitation in select U.S. Climate Divisions in Arizona, Colorado, Nevada, Utah and New Mexico. This resulted in two findings. First specific to the 500hPa ridge behavior, the ridge has been moving eastward and also has been intensifying through time. Second, results involving correlation tests between mean ridge location and intensity indicate precipitation across the selected Southwest Climate Divisions are strongly related to mean ridge intensity slightly more than ridge location. The relationships between mean ridge axis and observed precipitation also are negative, indicating an increase of one of the ridge parameters (i.e. continued eastward movement or intensification) lead to drier winter seasons across the Southwest. Increased understanding of relationships between upper-level ridging and observed wintertime precipitation aids in natural resource planning for an already arid region that relies heavily on winter precipitation.

Contributors

Agent

Created

Date Created
  • 2013