Matching Items (7)
Filtering by

Clear all filters

Description

In the construction industry, the management of knowledge is becoming an increasingly important element for success. The successful management of knowledge helps general contractors to better compete which ultimately leads to more contracts and potentially greater prots. The Life Cycle Costing assessment presented here is a small step in understanding the complex

In the construction industry, the management of knowledge is becoming an increasingly important element for success. The successful management of knowledge helps general contractors to better compete which ultimately leads to more contracts and potentially greater prots. The Life Cycle Costing assessment presented here is a small step in understanding the complex decision of investing in BIM from general contractor's perspective. This assessment has identified the cost components for BIM and has allocated the cost for a typical project.

Created2013-05
Description

There is no ’typical’ production process for Legally Autonomous Adults (LAD). However, some very general inputs and flows can be assumed: Physical, mental, emotional, and social or cultural inputs are provided by primary caregivers throughout the process. LADs in Arizona in the 21st century are produced in small batches. Inputs

There is no ’typical’ production process for Legally Autonomous Adults (LAD). However, some very general inputs and flows can be assumed: Physical, mental, emotional, and social or cultural inputs are provided by primary caregivers throughout the process. LADs in Arizona in the 21st century are produced in small batches. Inputs tend to be provided by consistent sources according to unique values, and the production process does not actually stop cold at the factory gate, but continues on into the next phase.

Sometimes, due to externalities like substance dependence or domestic violence, the original production process either deprives the product of essential inputs or adds toxic inputs, causing damage. The damage can carry forward into the next phases, or even be so severe that the production process is terminated. When there is a risk of such damage, then the product – the child – is removed from his original production system, taken into the custody of a state-run institution (Child Protective Services), and placed in foster care.

LADs who have experienced a foster care intervention as part of their production process are less likely to have that obligatory property of Legal Autonomy, and more likely to have obligatory properties that are detrimental to society at large. Omitting other variables, they have higher rates of incarceration, homelessness, and substance abuse than LADs who have not been in out-of-home foster care. The financial and societal costs of those dependencies are imposed on the same stakeholders whose efforts and contributions make the foster care system possible.

CPS removal triggers a system expansion that expends energy and resources in an attempt to compensate for the missing inputs and to mitigate the toxic inputs, if any, that the child’s family was adding. In a material production system, it seems illogical to construct a complex system expansion which predictably results in products lacking their most important obligatory property. That contradiction was the impetus for this paper.

The goal of this life cycle analysis is to visualize that system expansion. Then, the project seeks to quantify and compare the difference between this system expansion and the generalized original process, in units of dollars per LAD. Finally, the project assesses the statistical impacts of the system expansion on LADs, and describes further impacts of these LADs on society at large.

Created2013-05
Description

Already the leading cause of weather-related deaths in the United States, extreme heat events (EHEs) are expected to occur with greater frequency, duration and intensity over the next century. However, not all populations are affected equally. Risk factors for heat mortality—including age, race, income level, and infrastructure characteristics—often vary by

Already the leading cause of weather-related deaths in the United States, extreme heat events (EHEs) are expected to occur with greater frequency, duration and intensity over the next century. However, not all populations are affected equally. Risk factors for heat mortality—including age, race, income level, and infrastructure characteristics—often vary by geospatial location. While traditional epidemiological studies sometimes account for social risk factors, they rarely account for intra-urban variability in meteorological characteristics, or for the interaction between social and meteorological risks.

This study aims to develop estimates of EHEs at an intra-urban scale for two major metropolitan areas in the Southwest: Maricopa County (Arizona) and Los Angeles County (California). EHEs are identified at a 1/8-degree (12 km) spatial resolution using an algorithm that detects prolonged periods of abnormally high temperatures. Downscaled temperature projections from three general circulation models (GCMs) are analyzed under three relative concentration pathway (RCP) scenarios. Over the next century, EHEs are found to increase by 340-1800% in Maricopa County, and by 150-840% in Los Angeles County. Frequency of future EHEs is primarily driven by greenhouse gas concentrations, with the greatest number of EHEs occurring under the RCP 8.5 scenario. Intra-urban variation in EHEs is also found to be significant. Within Maricopa County, “high risk” regions exhibit 4.5 times the number of EHE days compared to “low risk” regions; within Los Angeles County, this ratio is 15 to 1.

The project website can be accessed here

Created2014-06-12
Description

An inter-temporal life cycle cost and greenhouse gas emissions assessment of the Los Angeles roadway network is developed to identify how construction decisions lead to embedded impacts and create an emergent behavior (vehicle miles traveled by users) in the long run.

A video of the growth of the network and additional

An inter-temporal life cycle cost and greenhouse gas emissions assessment of the Los Angeles roadway network is developed to identify how construction decisions lead to embedded impacts and create an emergent behavior (vehicle miles traveled by users) in the long run.

A video of the growth of the network and additional information are available here.

Created2013-04
Description

As average temperatures and occurrences of extreme heat events increase in the Southwest, the water infrastructure that was designed to operate under historical temperature ranges may become increasingly vulnerable to component and operational failures. For each major component along the life cycle of water in an urban water infrastructural system,

As average temperatures and occurrences of extreme heat events increase in the Southwest, the water infrastructure that was designed to operate under historical temperature ranges may become increasingly vulnerable to component and operational failures. For each major component along the life cycle of water in an urban water infrastructural system, potential failure events and their semi-quantitative probabilities of occurrence were estimated from interview responses of water industry professionals. These failure events were used to populate event trees to determine the potential pathways to cascading failures in the system. The probabilities of the cascading failure scenarios under future conditions were then calculated and compared to the probabilities of scenarios under current conditions to assess the increased vulnerability of the system. We find that extreme heat events can increase the vulnerability of water systems significantly and that there are ways for water infrastructure managers to proactively mitigate these vulnerabilities before problems occur.

102-Thumbnail Image.png
Description

The leading source of weather-related deaths in the United States is heat, and future projections show that the frequency, duration, and intensity of heat events will increase in the Southwest. Presently, there is a dearth of knowledge about how infrastructure may perform during heat waves or could contribute to social

The leading source of weather-related deaths in the United States is heat, and future projections show that the frequency, duration, and intensity of heat events will increase in the Southwest. Presently, there is a dearth of knowledge about how infrastructure may perform during heat waves or could contribute to social vulnerability. To understand how buildings perform in heat and potentially stress people, indoor air temperature changes when air conditioning is inaccessible are modeled for building archetypes in Los Angeles, California, and Phoenix, Arizona, when air conditioning is inaccessible is estimated.

An energy simulation model is used to estimate how quickly indoor air temperature changes when building archetypes are exposed to extreme heat. Building age and geometry (which together determine the building envelope material composition) are found to be the strongest indicators of thermal envelope performance. Older neighborhoods in Los Angeles and Phoenix (often more centrally located in the metropolitan areas) are found to contain the buildings whose interiors warm the fastest, raising particular concern because these regions are also forecast to experience temperature increases. To combat infrastructure vulnerability and provide heat refuge for residents, incentives should be adopted to strategically retrofit buildings where both socially vulnerable populations reside and increasing temperatures are forecast.

Created2015
104-Thumbnail Image.png
Description

Recent climatic trends show more flooding and extreme heat events and in the future transportation infrastructure may be susceptible to more frequent and intense environmental perturbations. Our transportation systems have largely been designed to withstand historical weather events, for example, floods that occur at an intensity that is experienced once every

Recent climatic trends show more flooding and extreme heat events and in the future transportation infrastructure may be susceptible to more frequent and intense environmental perturbations. Our transportation systems have largely been designed to withstand historical weather events, for example, floods that occur at an intensity that is experienced once every 100 years, and there is evidence that these events are expected become more frequent. There are increasing efforts to better understand the impacts of climate change on transportation infrastructure. An abundance of new research is emerging to study various aspects of climate change on transportation systems. Much of this research is focused on roadway networks and reliable automobile travel. We explore how flooding and extreme heat might impact passenger rail systems in the Northeast and Southwest U.S.