Matching Items (19)
156296-Thumbnail Image.png
Description
Understanding the resilience of water management systems is critical for the continued existence and growth of communities today, in urban and rural contexts alike. In recent years, many studies have evaluated long-term human-environmental interactions related to water management across the world, highlighting both resilient systems and those that eventually succumb

Understanding the resilience of water management systems is critical for the continued existence and growth of communities today, in urban and rural contexts alike. In recent years, many studies have evaluated long-term human-environmental interactions related to water management across the world, highlighting both resilient systems and those that eventually succumb to their vulnerabilities. To understand the multitude of factors impacting resilience, scholars often use the concept of adaptive capacity. Adaptive capacity is the ability of actors in a system to make adaptations in anticipation of and in response to change to minimize potential negative impacts.

In this three-paper dissertation, I evaluate the adaptive capacity of the water management systems of two medieval Khmer cities, located in present-day Cambodia, over the course of centuries. Angkor was the capital of the Khmer Empire for over 600 years (9 th -15 th centuries CE), except for one brief period when the capital was relocated to Koh Ker (921 – 944 CE). These cities both have massive water management systems that provide a comparative context for studying resilience; while Angkor thrived for hundreds of years, Koh Ker was occupied as the capital of the empire for a relatively short period. In the first paper, I trace the chronological and spatial development of two types of settlement patterns (epicenters and lower-density temple-reservoir settlement units) at Angkor in relation to state-sponsored hydraulic infrastructure. In the second and third papers, I conduct a diachronic analysis using empirical data for the adaptive capacity of the water management systems at both cities. The results suggest that adaptive capacity is useful for identifying causal factors in the resilience and failures of systems over the long term. The case studies also demonstrate the importance and warn of the danger of large centralized water management features.
ContributorsKlassen, Sarah E (Author) / Nelson, Ben (Thesis advisor) / Redman, Charles (Thesis advisor) / Evans, Damian (Committee member) / Smith, Mike E (Committee member) / Barton, Michael C (Committee member) / Arizona State University (Publisher)
Created2018
157234-Thumbnail Image.png
Description
Many global development initiatives focus on improving access to safe and affordable water. Governments and infrastructure in rapidly urbanizing cities struggle to meet the increased demand for water, especially in peri-urban and informal settlements of sub-Saharan Africa. The private sector, in the form of small water enterprises (SWEs), plays an

Many global development initiatives focus on improving access to safe and affordable water. Governments and infrastructure in rapidly urbanizing cities struggle to meet the increased demand for water, especially in peri-urban and informal settlements of sub-Saharan Africa. The private sector, in the form of small water enterprises (SWEs), plays an increasing role in satisfying demand for water, but their greater effects have seldom been investigated. This research explores how SWEs affect access to household water in a peri-urban settlement of Accra, Ghana and investigates their social, economic, and environmental impacts in the community. This research also examines how SWEs influence security and sustainability goals within the framing concepts of the US Army’s Stability doctrine and the United Nations Sustainable Development Goals (SDGs). The methods employed in this study were interviews, observation, and review of existing literature and case studies. Results of this qualitative analysis reveal that while SWEs increase and diversify local access to clean water, provide economic opportunities and jobs—especially to women—they also present environmental and health concerns when unregulated and unaddressed by educators, city officials, and community leaders. Further, in cases where municipal governments cannot provide safe and consistent access to clean water in the given location, results show that SWEs enterprises can work in cohesion with both the SDGs and the US Army stability goals. Moving forward, city officials, development programs, and US Army stability doctrine should consider supporting SWEs to increase water access and improve other developmental outcomes, while working to avoid potentially negative environmental and health outcomes.
ContributorsMallue, Natalie (Author) / White, Dave D. (Thesis advisor) / Allenby, Brad (Committee member) / Richmond, Amy (Committee member) / Arizona State University (Publisher)
Created2019
157239-Thumbnail Image.png
Description
As urban populations rapidly increase in an era of climate change and multiple social and environmental uncertainties, scientists and governments are cultivating knowledge and solutions for the sustainable growth and maintenance of cities. Although substantial literature focuses on urban water resource management related to both human and ecological sustainability, few

As urban populations rapidly increase in an era of climate change and multiple social and environmental uncertainties, scientists and governments are cultivating knowledge and solutions for the sustainable growth and maintenance of cities. Although substantial literature focuses on urban water resource management related to both human and ecological sustainability, few studies assess the unique role of waterway restorations to bridge anthropocentric and ecological concerns in urban environments. To address this gap, my study addressed if well-established sustainability principles are evoked during the nascent discourse of recently proposed urban waterway developments along over fifty miles of Arizona’s Salt River. In this study, a deductive content analysis is used to illuminate the emergence of sustainability principles, the framing of the redevelopment, and to illuminate macro-environmental discourses. Three sustainability principles dominated the discourse: civility and democratic governance; livelihood sufficiency and opportunity; and social-ecological system integrity. These three principles connected to three macro-discourses: economic rationalism; democratic pragmatism; and ecological modernity. These results hold implications for policy and theory and inform urban development processes for improvements to sustainability. As continued densification, in-fill and rapid urbanization continues in the 21st century, more cities are looking to reconstruct urban riverways. Therefore, the emergent sustainability discourse regarding potential revitalizations along Arizona’s Salt River is a manifestation of how waterways are perceived, valued, and essential to urban environments for anthropocentric and ecological needs.
ContributorsHorvath, Veronica (Author) / White, Dave D (Thesis advisor) / Mirumachi, Naho (Committee member) / Childers, Dan (Committee member) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2019
154570-Thumbnail Image.png
Description
This research investigates the dialectical relationships between water and social power. I analyze how the coupled processes of development, water privatization, and climate change have been shaping water struggles in Chile. I focus on how these hydro-struggles are reconfiguring everyday practices of water management at the community scale and the

This research investigates the dialectical relationships between water and social power. I analyze how the coupled processes of development, water privatization, and climate change have been shaping water struggles in Chile. I focus on how these hydro-struggles are reconfiguring everyday practices of water management at the community scale and the ways in which these dynamics may contribute to more democratic and sustainable modes of water governance at both regional and national scales. Using a historical-geographical and multi-sited ethnographical lens, I investigate how different geographical projects (forestry, irrigated agriculture, and hydropower) were deployed in the Biobio and Santiago regions of Chile during the last 200 hundred years. I analyze how since the 1970s, these hydro-modernization projects have been gradually privatized, which in turn has led to environmental degradation and water dispossession affecting peasants and other rural populations. I frame these transformations using the political-ecological notion of hydrosocial assemblages produced by the different stages of the hydro-modernity—Liberal, Keynesian, Socialist, Neoliberal. I detail how these stages have repeatedly reshaped Chilean hydrosocial processes. I unpack the stages through the analysis of forestry, irrigation and hydropower developments in the central and southern regions of Chile, emphasizing how they have produced both uneven socio-spatial development and growing hydrosocial metabolic rifts, particularly during neoliberal hydro-modernity (1981-2015). Hydrosocial metabolic rifts occur when people have been separated or dispossessed from direct access and control of their traditional water resources. I conclude by arguing that there is a need to overcome the current unsustainable market-led approach to water governance. I propose the notion of a 'commons hydro-modernity', which is based on growing environmental and water social movements that are promoting a socio-spatial project to reassemble Chilean hydrosocial metabolic relations in a more democratic and sustainable way.
ContributorsTorres Salinas, Robinson (Author) / Bolin, Bob (Thesis advisor) / Manuel-Navarrete, David (Committee member) / Larson, Kelli (Committee member) / Arizona State University (Publisher)
Created2016
154917-Thumbnail Image.png
Description
The worldwide supply of potable fresh water is ever decreasing. While 2.5% of Earth's water is fresh, only 1% is accessible. Of this water, the World Health Organization estimates that only one-third can be used to meet our daily needs while the other two-thirds are unusable due to contamination. As

The worldwide supply of potable fresh water is ever decreasing. While 2.5% of Earth's water is fresh, only 1% is accessible. Of this water, the World Health Organization estimates that only one-third can be used to meet our daily needs while the other two-thirds are unusable due to contamination. As the world population continues to grow and climate change reduces water security, we must consider not only solutions, but evaluate the perceptions and reactions of individuals in order to successfully implement such solutions. To that end, the goal of this dissertation is to explore human attitudes, beliefs, and behaviors around water issues by conducting cross-cultural comparisons of (1) water risks and solutions, (2) wastewater knowledge and acceptance, and (3) motivators for willingness to use treated wastewater. Previous research in these domains has primarily focused on a single site or national context. While such research is valuable for establishing how and why cultural context matters, comparative studies are also needed to help link perceptions at local and global scales. Adopting an interdisciplinary approach grounded in anthropological methods and theory, I use interview data collected in a range of international sites as part of the Arizona State University's Global Ethnohydrology Study. With funding from National Science Foundation grants to the Decision Center for a Desert City (DCDC) and the Central Arizona-Phoenix Long-Term Ecological Research project (CAP LTER), this dissertation explores cross-cultural perceptions of water threats and management strategies, specifically wastewater reclamation and reuse, in order to make recommendations for policy makers and water managers.
ContributorsStotts, Rhian (Author) / Wutich, Amber (Thesis advisor) / BurnSilver, Shauna (Committee member) / Grossman, Gary (Committee member) / White, Dave (Committee member) / Arizona State University (Publisher)
Created2016
Description

As average temperatures and occurrences of extreme heat events increase in the Southwest, the water infrastructure that was designed to operate under historical temperature ranges may become increasingly vulnerable to component and operational failures. For each major component along the life cycle of water in an urban water infrastructural system,

As average temperatures and occurrences of extreme heat events increase in the Southwest, the water infrastructure that was designed to operate under historical temperature ranges may become increasingly vulnerable to component and operational failures. For each major component along the life cycle of water in an urban water infrastructural system, potential failure events and their semi-quantitative probabilities of occurrence were estimated from interview responses of water industry professionals. These failure events were used to populate event trees to determine the potential pathways to cascading failures in the system. The probabilities of the cascading failure scenarios under future conditions were then calculated and compared to the probabilities of scenarios under current conditions to assess the increased vulnerability of the system. We find that extreme heat events can increase the vulnerability of water systems significantly and that there are ways for water infrastructure managers to proactively mitigate these vulnerabilities before problems occur.

Description

The Food-Energy-Water (FEW) nexus is the interaction and the interdependence of the food, energy and water systems. These interdependencies exist in all parts of the world yet little knowledge exists of the complexity within these interdependent systems. Using Arizona as a case study, systems-oriented frameworks are examined for their value

The Food-Energy-Water (FEW) nexus is the interaction and the interdependence of the food, energy and water systems. These interdependencies exist in all parts of the world yet little knowledge exists of the complexity within these interdependent systems. Using Arizona as a case study, systems-oriented frameworks are examined for their value in revealing the complexity of FEW nexus. Industrial Symbiosis, Life Cycle Assessment (LCA) and Urban Metabolism are examined. The Industrial Symbiosis presents the system as purely a technical one and looks only at technology and hard infrastructure.

The LCA framework takes a reductionist approach and tries to make the system manageable by setting boundary conditions. This allows the frameworks to analyze the soft infrastructure as well as the hard infrastructure. The LCA framework also helps determine potential impact. Urban Metabolism analyzes the interactions between the different infrastructures within the confines of the region and retains the complexity of the system. It is concluded that a combination of the frameworks may provide the most insight in revealing the complexity of nexus and guiding decision makers towards improving sustainability and resilience.

Description

In the economic crisis Detroit has been enduring for many decades, a unique crisis has emerged with the provision of water that is normally not seen in the developed world. The oversized, deteriorating, and underfunded water provision system has been steadily accruing debt for the water utility since population began

In the economic crisis Detroit has been enduring for many decades, a unique crisis has emerged with the provision of water that is normally not seen in the developed world. The oversized, deteriorating, and underfunded water provision system has been steadily accruing debt for the water utility since population began to decrease in the 1950s. As a result, the utility has instated rate increases and aggressive water shut off policies for non-paying residents. Residents have consequentially claimed that their human right to water has been breeched.

In this report, I analyze possible solutions to the water crisis from both the water utility and resident perspectives. Since all utility management solutions have very serious limitations on either side of the argument, I have chosen a set of technologies to consider as a part of an impact mitigation plan that can provide alternative sources of water for the people who no longer can rely on municipal water. I additionally propose an adaptive management plan to evaluate the effects of using these technologies in the long-term. The monitoring of the effects of technological mitigations might also help determine if sustainability (efficiency and equity) could be an attainable long-term solution to Detroit’s water crisis.