Matching Items (9)
Filtering by

Clear all filters

152491-Thumbnail Image.png
Description
Transformational sustainability science demands that stakeholders and researchers consider the needs and values of future generations in pursuit of solutions to sustainability problems. This dissertation research focuses on the real-world problem of unsustainable water governance in the Phoenix region of Central Arizona. A sustainability transition is the local water system

Transformational sustainability science demands that stakeholders and researchers consider the needs and values of future generations in pursuit of solutions to sustainability problems. This dissertation research focuses on the real-world problem of unsustainable water governance in the Phoenix region of Central Arizona. A sustainability transition is the local water system is necessary to overcome sustainability challenges and scenarios can be used to explore plausible and desirable futures to inform a transition, but this requires some methodological refinements. This dissertation refines scenario methodology to generate water governance scenarios for metropolitan Phoenix that: (i) feature enhanced stakeholder participation; (ii) incorporate normative values and preferences; (iii) focus on governance actors and their activities; and (iv) meet an expanded set of quality criteria. The first study in the dissertation analyzes and evaluates participatory climate change scenarios to provide recommendations for the construction and use of scenarios that advance climate adaptation and mitigation efforts. The second study proposes and tests a set of plausibility indications to substantiate or evaluate claims that scenarios and future projections could become reality, helping to establish the legitimacy of radically different or transformative scenarios among an extended peer community. The case study of water governance begins with the third study, which includes a current state analysis and sustainability appraisal of the Phoenix-area water system. This is followed by a fourth study which surveys Phoenix-area water decision-makers to better understand water-related preferences for use in scenario construction. The fifth and final study applies a multi-method approach to construct future scenarios of water governance in metropolitan Phoenix in 2030 using stakeholder preferences, among other normative frames, and testing systemic impacts with WaterSim 5.0, a dynamic simulation model of water in the region. The scenarios are boundary objects around which stakeholders can weigh tradeoffs, set priorities and reflect on impacts of water-related activities, broadening policy dialogues around water governance in central Arizona. Together the five studies advance transformational sustainability research by refining methods to engage stakeholders in crafting futures that define how individuals and institutions should operate in transformed and sustainable systems.
ContributorsKeeler, Lauren Withycombe (Author) / Wiek, Arnim (Thesis advisor) / White, Dave D (Committee member) / Lang, Daniel J (Committee member) / Arizona State University (Publisher)
Created2014
155929-Thumbnail Image.png
Description
Studies of governance have focused on the interactions among diverse actors while implicitly recognizing the role of power within those relationships. Explicit power analyses of water governance coordination are needed to better understand the conditions for and barriers to sustainability. I therefore utilized a novel conceptual framework to analyze vertical

Studies of governance have focused on the interactions among diverse actors while implicitly recognizing the role of power within those relationships. Explicit power analyses of water governance coordination are needed to better understand the conditions for and barriers to sustainability. I therefore utilized a novel conceptual framework to analyze vertical and horizontal governance, along with power, to address how governance interactions affect water sustainability in terms of (1) interactions among governance actors across local to state levels; (2) coordination among actors at the local level; and (3) the exercise of power among assorted actors. I adopted a qualitative case study methodology that involved triangulating interview transcripts, policy documents, and other data in the case study area of Prescott, Arizona.

Across governance scales, my analysis found that informational and contentious interactions occur around water management plans, groundwater withdrawal fees, and growth debates due to the stipulations of Arizona’s Groundwater Management Act. Locally, municipalities in different groundwater basins coordinate by pooling resources for water development due to shared growth visions. However, municipalities within the same groundwater basin are divided in their pursuit of the state-mandated goal of safe yield due to discontent arising from differing growth visions, libertarian values of water control, and unequal responsibilities among actors in conserving water or monitoring use. Finally, local and state actors exercise power through litigation, legislation, and political processes to pursue their interests, thereby limiting coordination for water sustainability.

My explicit analysis of power reveals that coordination occurs not just because of water policies but due to interest-based water narratives (growth and libertarian). The emphasis of growth proponents on supply augmentation and libertarian opposition to regulations pose significant barriers to water sustainability. Successful policy-based pursuits of water sustainability will, thus, require an acknowledgment of these management asymmetries and commitments to addressing them.
ContributorsAyodele, Deborah Olufunmilola (Author) / Larson, Kelli L (Thesis advisor) / Bolin, Robert (Committee member) / Manuel-Navarrete, David (Committee member) / Arizona State University (Publisher)
Created2017
157239-Thumbnail Image.png
Description
As urban populations rapidly increase in an era of climate change and multiple social and environmental uncertainties, scientists and governments are cultivating knowledge and solutions for the sustainable growth and maintenance of cities. Although substantial literature focuses on urban water resource management related to both human and ecological sustainability, few

As urban populations rapidly increase in an era of climate change and multiple social and environmental uncertainties, scientists and governments are cultivating knowledge and solutions for the sustainable growth and maintenance of cities. Although substantial literature focuses on urban water resource management related to both human and ecological sustainability, few studies assess the unique role of waterway restorations to bridge anthropocentric and ecological concerns in urban environments. To address this gap, my study addressed if well-established sustainability principles are evoked during the nascent discourse of recently proposed urban waterway developments along over fifty miles of Arizona’s Salt River. In this study, a deductive content analysis is used to illuminate the emergence of sustainability principles, the framing of the redevelopment, and to illuminate macro-environmental discourses. Three sustainability principles dominated the discourse: civility and democratic governance; livelihood sufficiency and opportunity; and social-ecological system integrity. These three principles connected to three macro-discourses: economic rationalism; democratic pragmatism; and ecological modernity. These results hold implications for policy and theory and inform urban development processes for improvements to sustainability. As continued densification, in-fill and rapid urbanization continues in the 21st century, more cities are looking to reconstruct urban riverways. Therefore, the emergent sustainability discourse regarding potential revitalizations along Arizona’s Salt River is a manifestation of how waterways are perceived, valued, and essential to urban environments for anthropocentric and ecological needs.
ContributorsHorvath, Veronica (Author) / White, Dave D (Thesis advisor) / Mirumachi, Naho (Committee member) / Childers, Dan (Committee member) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2019
154570-Thumbnail Image.png
Description
This research investigates the dialectical relationships between water and social power. I analyze how the coupled processes of development, water privatization, and climate change have been shaping water struggles in Chile. I focus on how these hydro-struggles are reconfiguring everyday practices of water management at the community scale and the

This research investigates the dialectical relationships between water and social power. I analyze how the coupled processes of development, water privatization, and climate change have been shaping water struggles in Chile. I focus on how these hydro-struggles are reconfiguring everyday practices of water management at the community scale and the ways in which these dynamics may contribute to more democratic and sustainable modes of water governance at both regional and national scales. Using a historical-geographical and multi-sited ethnographical lens, I investigate how different geographical projects (forestry, irrigated agriculture, and hydropower) were deployed in the Biobio and Santiago regions of Chile during the last 200 hundred years. I analyze how since the 1970s, these hydro-modernization projects have been gradually privatized, which in turn has led to environmental degradation and water dispossession affecting peasants and other rural populations. I frame these transformations using the political-ecological notion of hydrosocial assemblages produced by the different stages of the hydro-modernity—Liberal, Keynesian, Socialist, Neoliberal. I detail how these stages have repeatedly reshaped Chilean hydrosocial processes. I unpack the stages through the analysis of forestry, irrigation and hydropower developments in the central and southern regions of Chile, emphasizing how they have produced both uneven socio-spatial development and growing hydrosocial metabolic rifts, particularly during neoliberal hydro-modernity (1981-2015). Hydrosocial metabolic rifts occur when people have been separated or dispossessed from direct access and control of their traditional water resources. I conclude by arguing that there is a need to overcome the current unsustainable market-led approach to water governance. I propose the notion of a 'commons hydro-modernity', which is based on growing environmental and water social movements that are promoting a socio-spatial project to reassemble Chilean hydrosocial metabolic relations in a more democratic and sustainable way.
ContributorsTorres Salinas, Robinson (Author) / Bolin, Bob (Thesis advisor) / Manuel-Navarrete, David (Committee member) / Larson, Kelli (Committee member) / Arizona State University (Publisher)
Created2016
187828-Thumbnail Image.png
Description
With less than seven years left to reach the ambitious targets of the United Nations' 2030 Sustainable Development Goals (SDGs), it is imperative to understand how the SDGs are operationalized in practice to support effective governance. One integrative approach, the water, energy, and food (WEF) nexus, has been proposed to

With less than seven years left to reach the ambitious targets of the United Nations' 2030 Sustainable Development Goals (SDGs), it is imperative to understand how the SDGs are operationalized in practice to support effective governance. One integrative approach, the water, energy, and food (WEF) nexus, has been proposed to facilitate SDGs planning and implementation by incorporating synergies, co-benefits, and trade-offs. In this dissertation, I conduct three interrelated WEF nexus studies using a sustainability lens to develop new approaches and identify actionable measures to support the SDGs. The first paper is a systematic literature review (2015 – 2022) to investigate the extent to which WEF nexus research has generated actionable knowledge to achieve the SDGs. The findings show that the WEF nexus literature explicitly considering the SDGs mainly focuses on governance and environmental protection, with fewer studies focusing on target populations and affordability. In the second paper, I reframed the water quality concerns using a nexus and systems thinking approach in a FEW nexus hotspot, the Rio Negro Basin (RNB) in Uruguay. While Uruguay is committed to the 2030 Agenda for Sustainable Development, sustainability challenges endure in managing synergies and trade-offs, resulting in strategy setbacks for the sustainable development of food, land, water, and oceans. Reframing the water quality problem facilitated the identification of potential alternative intervention points to support local problem-solving capacity. In the third paper, I conducted semi-structured interviews and examined the meeting transcripts of the RNB Commission to understand local perspectives about how the activities and initiatives taking place in the basin enhance or diminish the overall sustainability. Sustainability criteria for river basin planning and management were operationalized through qualitative appraisal questions. The case of the RNB illustrates the challenges of coordinating the national development agenda to local livelihood. This dissertation advances the WEF nexus and sustainability science literature by shedding light on the implications of the research trend to support the SDGs, as well as reframing and appraising a persistent water quality problem to support sustainable development.
ContributorsOjeda Matos, Glorynel (Author) / White, Dave D (Thesis advisor) / Brundiers, Katja (Committee member) / Garcia, Margaret (Committee member) / Arizona State University (Publisher)
Created2023
171584-Thumbnail Image.png
Description
Accelerated climate and land use land cover (LULC) changes are anticipated to significantly impact water resources in the Colorado River Basin (CRB), a major freshwater source in the southwestern U.S. The need for actionable information from hydrologic research is growing rapidly, given considerable uncertainties. For instance, it is unclear if

Accelerated climate and land use land cover (LULC) changes are anticipated to significantly impact water resources in the Colorado River Basin (CRB), a major freshwater source in the southwestern U.S. The need for actionable information from hydrologic research is growing rapidly, given considerable uncertainties. For instance, it is unclear if the predicted high degree of interannual precipitation variability across the basin could overwhelm the impacts of future warming and how this might vary in space. Climate change will also intensify forest disturbances (wildfire, mortality, thinning), which can significantly impact water resources. These impacts are not constrained, given findings of mixed post-disturbance hydrologic responses. Process-based models like the Variable Infiltration Capacity (VIC) platform can quantitatively predict hydrologic behaviors of these complex systems. However, barriers limit their effectiveness to inform decision making: (1) simulations generate enormous data volumes, (2) outputs are inaccessible to managers, and (3) modeling is not transparent. I designed a stakeholder engagement and VIC modeling process to overcome these challenges, and developed a web-based tool, VIC-Explorer, to “open the black box” of my efforts. Meteorological data was from downscaled historical (1950-2005) and future projections (2006-2099) of eight climate models that best represent climatology under low- and high- emissions. I used two modeling methods: (1) a “top-down” approach to assess an “envelope of hydrologic possibility” under the 16 climate futures; and (2) a “bottom-up” evaluation of hydrology in two climates from the ensemble representing “Hot/Dry” and “Warm/Wet” futures. For the latter assessment, I modified land cover using projections of a LULC model and applied more drastic forest disturbances. I consulted water managers to expand the legitimacy of the research. Results showed Far-Future (2066-2095) basin-wide mean annual streamflow decline (relative to 1976-2005; ensemble median trends of -5% to -25%), attributed to warming that diminished spring snowfall and melt and year-round increased soil evaporation from the Upper Basin, and overall precipitation declines in the Lower Basin. Forest disturbances partially offset warming effects (basin-wide mean annual streamflow up to 12% larger than without disturbance). Results are available via VIC-Explorer, which includes documentation and guided analyses to ensure findings are interpreted appropriately for decision-making.
ContributorsWhitney, Kristen Marie (Author) / Vivoni, Enrique R (Thesis advisor) / Mascaro, Giuseppe (Committee member) / Whipple, Kelin X (Committee member) / White, Dave D (Committee member) / Xu, Tianfang (Committee member) / Arizona State University (Publisher)
Created2022
161313-Thumbnail Image.png
Description
The food-energy-water (FEW) nexus refers to the interactions, trade-offs, and relationships between the three resources and their related governance sectors. Given the significant interdependencies, decisions made in one sector can affect the other two; thus, integrated governance can reduce unintended consequences and lead towards increased resource security and sustainability. Despite

The food-energy-water (FEW) nexus refers to the interactions, trade-offs, and relationships between the three resources and their related governance sectors. Given the significant interdependencies, decisions made in one sector can affect the other two; thus, integrated governance can reduce unintended consequences and lead towards increased resource security and sustainability. Despite the known benefits, many governance decisions continue to be made in “silos,” where stakeholders do not coordinate across sectoral boundaries. Scholars have begun to identify barriers to the implementation of integrated FEW nexus governance, yet there is still minimal understanding of the reasons why these barriers exist and no theoretical framework for evaluating or assessing FEW nexus governance. Integrating the theory of collaborative governance with the concept of the FEW nexus provides an opportunity to better understand the barriers to and structures of FEW nexus governance and to propose solutions for increased collaborative FEW nexus governance in practice. To investigate this governance system, I examined the collaborative governance of the FEW nexus in the context of extreme urban water challenges in two urban case cities: Phoenix, Arizona, USA and Cape Town, South Africa. First, I performed a media analysis of the 2018 Cape Town water crisis to understand the impact of the water crisis on the FEW nexus resource system and the collaborative governance employed to respond to that crisis. Second, I conducted a systematic case study of FEW nexus governance in Phoenix, Arizona to understand barriers to collaborative governance implementation in the system and to identify opportunities to overcome these barriers. Finally, I presented a framework of indicators to assess the collaborative governance of the local FEW nexus. This dissertation will advance the sustainability literature by moving the concept of FEW nexus governance from theory and conceptualization towards operationalization and measurement.
ContributorsJones, Jaime Leah (Author) / White, Dave D (Thesis advisor) / Melnick, Rob (Committee member) / Aggarwal, Rimjhim (Committee member) / Arizona State University (Publisher)
Created2021
161831-Thumbnail Image.png
Description
Globally, rivers are being heavily dammed and over-utilized to the point where water shortages are starting to occur. This problem is magnified in arid and semi-arid regions where climate change, growing populations, intensive agriculture and urbanization have created tremendous pressures on existing river systems. Regulatory incentives have been enacted in

Globally, rivers are being heavily dammed and over-utilized to the point where water shortages are starting to occur. This problem is magnified in arid and semi-arid regions where climate change, growing populations, intensive agriculture and urbanization have created tremendous pressures on existing river systems. Regulatory incentives have been enacted in recent decades that have spurred river restoration programs in the United States. But what kind of governance does river restoration require that is different from allocative institutional set-ups? Are these recovery programs succeeding in restoring ecological health and resilience of the rivers? Do the programs contribute to social-ecological resilience of the river systems more broadly? This study aims to tackle these key questions for two Colorado River sub-basin recovery programs (one in the Upper Basin and one in the Lower Basin) through utilization of different frameworks and methodologies for each. Organizational resilience to institutional and biophysical disturbances varies, with the Upper Basin program being more resilient than the Lower Basin program. Ecological resilience as measured by beta diversity (for the Upper Basin) was a factor of the level of hydrological and technological interventions rather than an occurrence of the natural flow regime. This points to the fact that in a highly-dampened and managed system like the Colorado River, the dampened flow regime alone is not a significant factor in maintaining community diversity and ecological health. A broad-scale social-ecological analysis supports the finding that the natural feedback between social and ecological elements is broken and recovery efforts are more an attempt at resuscitating the river system to maintain a semblance of historic levels of fish populations and aquatic processes. Adaptive management pathways for the future need to address and build pathways to transformability into recovery planning to achieve resilience for the river system.
ContributorsSrinivasan, Jaishri (Author) / Schoon, Michael L (Thesis advisor) / Sabo, John L (Thesis advisor) / White, Dave D (Committee member) / Janssen, Marcus A (Committee member) / Arizona State University (Publisher)
Created2021