Matching Items (7)
Filtering by

Clear all filters

152089-Thumbnail Image.png
Description
Water resource management is becoming increasingly burdened by uncertain and fluctuating conditions resulting from climate change and population growth which place increased demands on already strained resources. Innovative water management schemes are necessary to address the reality of available water supplies. One such approach is the substitution of trade in

Water resource management is becoming increasingly burdened by uncertain and fluctuating conditions resulting from climate change and population growth which place increased demands on already strained resources. Innovative water management schemes are necessary to address the reality of available water supplies. One such approach is the substitution of trade in virtual water for the use of local water supplies. This study provides a review of existing work in the use of virtual water and water footprint methods. Virtual water trade has been shown to be a successful method for addressing water scarcity and decreasing overall water consumption by shifting high water consumptive processes to wetter regions. These results however assume that all water resource supplies are equivalent regardless of physical location and they do not tie directly to economic markets. In this study we introduce a new mathematical framework, Embedded Resource Accounting (ERA), which is a synthesis of several different analytical methods presently used to quantify and describe human interactions with the economy and the natural environment. We define the specifics of the ERA framework in a generic context for the analysis of embedded resource trade in a way that links directly with the economics of that trade. Acknowledging the cyclical nature of water and the abundance of actual water resources on Earth, this study addresses fresh water availability within a given region. That is to say, the quantities of fresh water supplies annually available at acceptable quality for anthropogenic uses. The results of this research provide useful tools for water resource managers and policy makers to inform decision making on, (1) reallocation of local available fresh water resources, and (2) strategic supplementation of those resources with outside fresh water resources via the import of virtual water.
ContributorsAdams, Elizabeth Anne (Author) / Ruddell, Benjamin L (Thesis advisor) / Allenby, Braden R. (Thesis advisor) / Seager, Thomas P (Committee member) / Arizona State University (Publisher)
Created2013
152864-Thumbnail Image.png
Description
As urban populations grow, water managers are becoming increasingly concerned about water scarcity. Water managers once relied on developing new sources of water supply to manage scarcity but economically feasible sources of unclaimed water are now rare, leading to an increased interest in demand side management. Water managers in Las

As urban populations grow, water managers are becoming increasingly concerned about water scarcity. Water managers once relied on developing new sources of water supply to manage scarcity but economically feasible sources of unclaimed water are now rare, leading to an increased interest in demand side management. Water managers in Las Vegas, Nevada have developed innovative demand side management strategies due to the cities rapid urbanization and limited water supply. Three questions are addressed. First, in the developed areas of the Las Vegas Valley Water District service areas, how did vegetation area change? To quantify changes in vegetation area, the Matched Filter Vegetation Index (MFVI) is developed from Mixture Tuned Match Filtering estimates of vegetation area calibrated against vegetation area estimates from high-resolution aerial photography. In the established city core, there was a small but significant decline in vegetation area. Second, how much of the observed decline in per capita consumption can be explained by Las Vegas land cover and physical infrastructure change that resulted from extensive new construction and new use of water conserving technology, and how much can be attributed to water conservation policy choices? A regression analysis is performed, followed by an analysis of three counter-factual scenarios to decompose reductions in household water into its constituent parts. The largest citywide drivers of change in water consumption were increased water efficiency associated with new construction and rapid population growth. In the established urban core, the most significant driver was declining vegetation area. Third, water savings generated by a conservation program that provides incentives for homeowners to convert grass into desert landscaping are estimated. In the city core, 82 gallons of water are saved in June for each square meter of landscape converted in the first year after conversion, but the savings attenuate to 33 gallons per meter converted as the landscape ages. Voluntary landscape conversion programs can generate substantial water savings. The most significant result is that the most effective way to ensure long term, sustainable reductions in water consumption in a growing city without changing water prices is to support the construction of water efficient infrastructure.
ContributorsBrelsford, Christina M (Author) / Abbott, Joshua K (Thesis advisor) / York, Abigail M (Thesis advisor) / Hanemann, W. Michael (Committee member) / McPherson, Timothy (Committee member) / Arizona State University (Publisher)
Created2014
156025-Thumbnail Image.png
Description
Sustainability depends in part on our capacity to resolve dilemmas of the commons in Coupled Infrastructure Systems (CIS). Thus, we need to know more about how to incentivize individuals to take collective action to manage shared resources. Moreover, given that we will experience new and more extreme weather events due

Sustainability depends in part on our capacity to resolve dilemmas of the commons in Coupled Infrastructure Systems (CIS). Thus, we need to know more about how to incentivize individuals to take collective action to manage shared resources. Moreover, given that we will experience new and more extreme weather events due to climate change, we need to learn how to increase the robustness of CIS to those shocks. This dissertation studies irrigation systems to contribute to the development of an empirically based theory of commons governance for robust systems. I first studied the eight institutional design principles (DPs) for long enduring systems of shared resources that the Nobel Prize winner Elinor Ostrom proposed in 1990. I performed a critical literature review of 64 studies that looked at the institutional configuration of CIS, and based on my findings I propose some modifications of their definitions and application in research and policy making. I then studied how the revisited design principles, when analyzed conjointly with biophysical and ethnographic characteristics of CISs, perform to avoid over-appropriation, poverty and critical conflicts among users of an irrigation system. After carrying out a meta-analysis of 28 cases around the world, I found that particular combinations of those variables related to population size, countries corruption, the condition of water storage, monitoring of users behavior, and involving users in the decision making process for the commons governance, were sufficient to obtain the desired outcomes. The two last studies were based on the Peruvian Piura Basin, a CIS that has been exposed to environmental shocks for decades. I used secondary and primary data to carry out a longitudinal study using as guidance the robustness framework, and different hypothesis from prominent collapse theories to draw potential explanations. I then developed a dynamic model that shows how at the current situation it is more effective to invest in rules enforcement than in the improvement of the physical infrastructure (e.g. reservoir). Finally, I explored different strategies to increase the robustness of the system, through enabling collective action in the Basin.
ContributorsRubinos, Cathy (Author) / Anderies, John M (Thesis advisor) / Abbott, Joshua K (Committee member) / Janssen, Marcus A (Committee member) / Arizona State University (Publisher)
Created2017
157254-Thumbnail Image.png
Description
Payments for ecosystem services (PES) are transactions between landholders and the beneficiaries of the services their land provides. PES schemes are growing worldwide with annual transactions over ten billion dollars (Salzman et al., 2018). Much can be learned from looking at oldest and best funded PES schemes on working agricultural

Payments for ecosystem services (PES) are transactions between landholders and the beneficiaries of the services their land provides. PES schemes are growing worldwide with annual transactions over ten billion dollars (Salzman et al., 2018). Much can be learned from looking at oldest and best funded PES schemes on working agricultural land. Initiated in 1985, the USDA’s Conservation Reserve Program (CRP) is the oldest private conservation PES program in the United States. CRP incentivizes farmers to put their land into conservation through an annual payment. In Iowa, CRP has been a source of extra income and a way for farmers to buffer the fluctuating costs of cash crops, such as corn and soy. The dominance of agriculture in Iowa poses many challenges for water quality. A potential solution to the problem, implemented through CRP, is the use of conservation practices to mitigate the negative effects of agricultural run-off.

This dissertation considers three aspects of the problem:

1. the relationship between changes in land cover due to CRP enrollment and changes in water quality, controlling for a range of factors known to have an effect on the filtering role of different land covers;

2. the inter-annual variability in water quality measures and enrollment in different CRP conservation practices to examine the cost-effectiveness of specific conservation practices in mitigating lake sedimentation and eutrophication;

3. discrete choice models to identify what characteristics drive the enrollment by farmers into specific conservation practices.

Results indicate that land cover and CRP have different impacts on different indicators of lake water quality. In addition, conservation practices that were cost-effective for one water quality variable tended to be cost-effective for the other water quality variables. Farmers are making decisions to enroll in CRP based on the opportunity cost of the land. Therefore, it is necessary to alter financial incentives to promote productive land being putting into CRP through continuous sign-up. The United States Department of Agriculture (USDA) needs a more effective way to calculate the payment level for practices in order to be competitive with the predicted value of major crops.
ContributorsCamhi, Ashley L (Author) / Perrings, Charles (Thesis advisor) / Abbott, Joshua K (Thesis advisor) / Englin, Jeffrey (Committee member) / Sala, Osvaldo (Committee member) / Iovanna, Rich (Committee member) / Arizona State University (Publisher)
Created2019
189264-Thumbnail Image.png
Description
Nature-based recreation is a popular way for people to interact with the environment that also confers numerous economic and health benefits. It is important that the social-ecological systems (SES) that host nature-based recreation be managed effectively, both to preserve the benefits of this important human-environment interaction, and to avoid the

Nature-based recreation is a popular way for people to interact with the environment that also confers numerous economic and health benefits. It is important that the social-ecological systems (SES) that host nature-based recreation be managed effectively, both to preserve the benefits of this important human-environment interaction, and to avoid the potential negative outcomes of recreational commons. The SES that host nature-based recreation are characterized by complex and dynamic feedbacks that complicate their management. Managing these systems is made more complex by the suite of external, multi-scalar, and anthropogenic forces (e.g., climate change, trans-boundary pollution) that plague them with increasing frequency. This dissertation investigates the importance of accounting for this full range of system feedbacks when managing for nature-based recreation. I begin with a broad discussion of the types of dilemmas faced by managers of nature-based recreation. I create a systems-thinking typology of management dilemmas that apply across different recreation modes and system contexts, and which are characterized as feedbacks within the broader recreational system. My findings in this chapter have important implications for understanding and anticipating how different exogenous and endogenous shocks (including management interventions, themselves) may work through or change the processes in SES that host nature-based recreation. In the following two chapters, I narrow my focus to examine case studies of specific dilemma archetypes and proposed management interventions. First, I perform an ex ante analysis of a prospective policy response to a regulatory spiral of excess recreational fishing effort and abridged fishing seasons in the U.S. Gulf of Mexico. I estimate behavioral models of fishers’ responses to a prospective incentive-based intervention, and find evidence that such a policy could improve multiple fishery outcomes. Second, I perform an ex post program evaluation of an invasive species bounty program. My results suggest that the program underperformed because it failed to overcome countervailing incentives. Together, my case study analyses reveal the value of modeling for designing policy for these complex SES and show the importance of accounting for the full set of system feedbacks (including the incentives that drive recreator behaviors and the impacts of those behaviors) when managing nature-based recreation.
ContributorsJungers, Brenna (Author) / Abbott, Joshua K (Thesis advisor) / Leonard, Bryan (Committee member) / Anderies, John M (Committee member) / Bair, Lucas S (Committee member) / Arizona State University (Publisher)
Created2023
157726-Thumbnail Image.png
Description
In many social-ecological systems, shared resources play a critical role in supporting the livelihoods of rural populations. Physical infrastructure enables resource access and reduces the variability of resource supply. In order for the infrastructure to remain functional, institutions must incentivize individuals to engage in provision and maintenance. The objective

In many social-ecological systems, shared resources play a critical role in supporting the livelihoods of rural populations. Physical infrastructure enables resource access and reduces the variability of resource supply. In order for the infrastructure to remain functional, institutions must incentivize individuals to engage in provision and maintenance. The objective of my dissertation is to understand key formal and informal institutions that affect provision of shared infrastructure and the policy tools that may improve infrastructure provision. I examine these questions in the context of irrigation systems in India because infrastructure maintenance is a persistent challenge and system function is critical for global food production.

My first study investigates how the presence of private infrastructure, such as groundwater pumps, affects the provision of shared infrastructure, such as shared tanks or surface reservoirs. I examine whether formal institutions, such as water pricing instruments, may prevent under-provision of the shared tanks. My findings suggest that in the absence of rules that coordinate tank maintenance, the presence of private pumps will have a detrimental effect on system productivity and equality. On the other hand, the combination of a fixed groundwater fee and a location-based maintenance fee for tank users can improve system productivity and equality.

The second study examines the effect of power asymmetries between farmers, caused by informal institutions such as caste, on the persistence of political institutions that govern infrastructure provision. I examined the effect of policy tools, such as non-farm wage employment and informational interventions, on the persistence of two types of political institutions: self-governed and nested. Results suggest that critical regime shifts in political institutions can be generated by either intervening in formal institutions, such as non-farm wage employment, or informal institutions, such as knowledge transmission or learning mechanisms.

The third study investigates how bureaucratic and political corruption affect public good provision. I examine how institutional and environmental factors affect the likelihood of corruption and infrastructure provision. I demonstrate that cracking down on corruption is only beneficial when infrastructure provision is poor. I also show that bureaucratic wages play an important role in curbing extralegal transactions and improving infrastructure provision.
ContributorsVallury, Sechindra (Author) / Abbott, Joshua K (Thesis advisor) / Anderies, John M (Thesis advisor) / Leonard, Bryan (Committee member) / Arizona State University (Publisher)
Created2019