Matching Items (7)
Filtering by

Clear all filters

152491-Thumbnail Image.png
Description
Transformational sustainability science demands that stakeholders and researchers consider the needs and values of future generations in pursuit of solutions to sustainability problems. This dissertation research focuses on the real-world problem of unsustainable water governance in the Phoenix region of Central Arizona. A sustainability transition is the local water system

Transformational sustainability science demands that stakeholders and researchers consider the needs and values of future generations in pursuit of solutions to sustainability problems. This dissertation research focuses on the real-world problem of unsustainable water governance in the Phoenix region of Central Arizona. A sustainability transition is the local water system is necessary to overcome sustainability challenges and scenarios can be used to explore plausible and desirable futures to inform a transition, but this requires some methodological refinements. This dissertation refines scenario methodology to generate water governance scenarios for metropolitan Phoenix that: (i) feature enhanced stakeholder participation; (ii) incorporate normative values and preferences; (iii) focus on governance actors and their activities; and (iv) meet an expanded set of quality criteria. The first study in the dissertation analyzes and evaluates participatory climate change scenarios to provide recommendations for the construction and use of scenarios that advance climate adaptation and mitigation efforts. The second study proposes and tests a set of plausibility indications to substantiate or evaluate claims that scenarios and future projections could become reality, helping to establish the legitimacy of radically different or transformative scenarios among an extended peer community. The case study of water governance begins with the third study, which includes a current state analysis and sustainability appraisal of the Phoenix-area water system. This is followed by a fourth study which surveys Phoenix-area water decision-makers to better understand water-related preferences for use in scenario construction. The fifth and final study applies a multi-method approach to construct future scenarios of water governance in metropolitan Phoenix in 2030 using stakeholder preferences, among other normative frames, and testing systemic impacts with WaterSim 5.0, a dynamic simulation model of water in the region. The scenarios are boundary objects around which stakeholders can weigh tradeoffs, set priorities and reflect on impacts of water-related activities, broadening policy dialogues around water governance in central Arizona. Together the five studies advance transformational sustainability research by refining methods to engage stakeholders in crafting futures that define how individuals and institutions should operate in transformed and sustainable systems.
ContributorsKeeler, Lauren Withycombe (Author) / Wiek, Arnim (Thesis advisor) / White, Dave D (Committee member) / Lang, Daniel J (Committee member) / Arizona State University (Publisher)
Created2014
152493-Thumbnail Image.png
Description
Research shows that many water governance regimes are failing to guide social-ecological systems away from points, beyond which, damage to social and environmental well-being will be difficult to correct. This problem is apparent in regions that face water conflicts and climate threats. There remains a need to clarify what is

Research shows that many water governance regimes are failing to guide social-ecological systems away from points, beyond which, damage to social and environmental well-being will be difficult to correct. This problem is apparent in regions that face water conflicts and climate threats. There remains a need to clarify what is it about governance that people need to change in water conflict prone regions, how to collectively go about doing that, and how research can actively support this. To address these needs, here I present a collaborative research project from the dry tropics of Guanacaste Province, Costa Rica. The project addressed the overarching questions: How can water be governed sustainably in water-contested and climate-threatened regions? And, how can people transition current water governance regimes toward more sustainable ones? In pursuit of these questions, a series of individual studies were performed with many partners and collaborators. These studies included: a participatory analysis and sustainability assessment of current water governance regimes; a case analysis and comparison of water conflicts; constructing alternative governance scenarios; and, developing governance transition strategies. Results highlight the need for water governance that addresses asymmetrical knowledge gaps especially concerning groundwater resources, reconciles disenfranchised groups, and supports local leaders. Yet, actions taken based on these initial results, despite some success influencing policy, found substantial challenges confronting them. In-depth conflict investigations, for example, found that deeply rooted issues such friction between opposing local-based and national institutions were key conflict drivers in the region. To begin addressing these issues, researchers and stakeholders then constructed a set of governing alternatives and devised governance transition strategies that could actively support people to achieve more sustainable alternatives and avoid less sustainable ones. These efforts yielded insight into the collective actions needed to implement more sustainable water governance regimes, including ways to overcoming barriers that drive harmful water conflicts. Actions based on these initial strategies yielded further opportunities, challenges, and lessons. Overall, the project addresses the research and policy gap between identifying what is sustainable water governance and understanding the strategies needed to implement it successfully in regions that experience water conflict and climate impacts.
ContributorsKuzdas, Christopher Paul (Author) / Wiek, Arnim (Thesis advisor) / Childers, Daniel (Thesis advisor) / Vignola, Raffaele (Committee member) / Eakin, Hallie (Committee member) / Basile, George (Committee member) / Arizona State University (Publisher)
Created2014
Description

Better methods are necessary to fully account for anthropogenic impacts on ecosystems and the essential services provided by ecosystems that sustain human life. Current methods for assessing sustainability, such as life cycle assessment (LCA), typically focus on easily quantifiable indicators such as air emissions with no accounting for the essential

Better methods are necessary to fully account for anthropogenic impacts on ecosystems and the essential services provided by ecosystems that sustain human life. Current methods for assessing sustainability, such as life cycle assessment (LCA), typically focus on easily quantifiable indicators such as air emissions with no accounting for the essential ecosystem benefits that support human or industrial processes. For this reason, more comprehensive, transparent, and robust methods are necessary for holistic understanding of urban technosphere and ecosphere systems, including their interfaces. Incorporating ecosystem service indicators into LCA is an important step in spanning this knowledge gap.

For urban systems, many built environment processes have been investigated but need to be expanded with life cycle assessment for understanding ecosphere impacts. To pilot these new methods, a material inventory of the building infrastructure of Phoenix, Arizona can be coupled with LCA to gain perspective on the impacts assessment for built structures in Phoenix. This inventory will identify the origins of materials stocks, and the solid and air emissions waste associated with their raw material extraction, processing, and construction and identify key areas of future research necessary to fully account for ecosystem services in urban sustainability assessments. Based on this preliminary study, the ecosystem service impacts of metropolitan Phoenix stretch far beyond the county boundaries. A life cycle accounting of the Phoenix’s embedded building materials will inform policy and decision makers, assist with community education, and inform the urban sustainability community of consequences.

Description

As average temperatures and occurrences of extreme heat events increase in the Southwest, the water infrastructure that was designed to operate under historical temperature ranges may become increasingly vulnerable to component and operational failures. For each major component along the life cycle of water in an urban water infrastructural system,

As average temperatures and occurrences of extreme heat events increase in the Southwest, the water infrastructure that was designed to operate under historical temperature ranges may become increasingly vulnerable to component and operational failures. For each major component along the life cycle of water in an urban water infrastructural system, potential failure events and their semi-quantitative probabilities of occurrence were estimated from interview responses of water industry professionals. These failure events were used to populate event trees to determine the potential pathways to cascading failures in the system. The probabilities of the cascading failure scenarios under future conditions were then calculated and compared to the probabilities of scenarios under current conditions to assess the increased vulnerability of the system. We find that extreme heat events can increase the vulnerability of water systems significantly and that there are ways for water infrastructure managers to proactively mitigate these vulnerabilities before problems occur.

Description

The Food-Energy-Water (FEW) nexus is the interaction and the interdependence of the food, energy and water systems. These interdependencies exist in all parts of the world yet little knowledge exists of the complexity within these interdependent systems. Using Arizona as a case study, systems-oriented frameworks are examined for their value

The Food-Energy-Water (FEW) nexus is the interaction and the interdependence of the food, energy and water systems. These interdependencies exist in all parts of the world yet little knowledge exists of the complexity within these interdependent systems. Using Arizona as a case study, systems-oriented frameworks are examined for their value in revealing the complexity of FEW nexus. Industrial Symbiosis, Life Cycle Assessment (LCA) and Urban Metabolism are examined. The Industrial Symbiosis presents the system as purely a technical one and looks only at technology and hard infrastructure.

The LCA framework takes a reductionist approach and tries to make the system manageable by setting boundary conditions. This allows the frameworks to analyze the soft infrastructure as well as the hard infrastructure. The LCA framework also helps determine potential impact. Urban Metabolism analyzes the interactions between the different infrastructures within the confines of the region and retains the complexity of the system. It is concluded that a combination of the frameworks may provide the most insight in revealing the complexity of nexus and guiding decision makers towards improving sustainability and resilience.

Description

In the economic crisis Detroit has been enduring for many decades, a unique crisis has emerged with the provision of water that is normally not seen in the developed world. The oversized, deteriorating, and underfunded water provision system has been steadily accruing debt for the water utility since population began

In the economic crisis Detroit has been enduring for many decades, a unique crisis has emerged with the provision of water that is normally not seen in the developed world. The oversized, deteriorating, and underfunded water provision system has been steadily accruing debt for the water utility since population began to decrease in the 1950s. As a result, the utility has instated rate increases and aggressive water shut off policies for non-paying residents. Residents have consequentially claimed that their human right to water has been breeched.

In this report, I analyze possible solutions to the water crisis from both the water utility and resident perspectives. Since all utility management solutions have very serious limitations on either side of the argument, I have chosen a set of technologies to consider as a part of an impact mitigation plan that can provide alternative sources of water for the people who no longer can rely on municipal water. I additionally propose an adaptive management plan to evaluate the effects of using these technologies in the long-term. The monitoring of the effects of technological mitigations might also help determine if sustainability (efficiency and equity) could be an attainable long-term solution to Detroit’s water crisis.