Matching Items (11)
Filtering by

Clear all filters

152864-Thumbnail Image.png
Description
As urban populations grow, water managers are becoming increasingly concerned about water scarcity. Water managers once relied on developing new sources of water supply to manage scarcity but economically feasible sources of unclaimed water are now rare, leading to an increased interest in demand side management. Water managers in Las

As urban populations grow, water managers are becoming increasingly concerned about water scarcity. Water managers once relied on developing new sources of water supply to manage scarcity but economically feasible sources of unclaimed water are now rare, leading to an increased interest in demand side management. Water managers in Las Vegas, Nevada have developed innovative demand side management strategies due to the cities rapid urbanization and limited water supply. Three questions are addressed. First, in the developed areas of the Las Vegas Valley Water District service areas, how did vegetation area change? To quantify changes in vegetation area, the Matched Filter Vegetation Index (MFVI) is developed from Mixture Tuned Match Filtering estimates of vegetation area calibrated against vegetation area estimates from high-resolution aerial photography. In the established city core, there was a small but significant decline in vegetation area. Second, how much of the observed decline in per capita consumption can be explained by Las Vegas land cover and physical infrastructure change that resulted from extensive new construction and new use of water conserving technology, and how much can be attributed to water conservation policy choices? A regression analysis is performed, followed by an analysis of three counter-factual scenarios to decompose reductions in household water into its constituent parts. The largest citywide drivers of change in water consumption were increased water efficiency associated with new construction and rapid population growth. In the established urban core, the most significant driver was declining vegetation area. Third, water savings generated by a conservation program that provides incentives for homeowners to convert grass into desert landscaping are estimated. In the city core, 82 gallons of water are saved in June for each square meter of landscape converted in the first year after conversion, but the savings attenuate to 33 gallons per meter converted as the landscape ages. Voluntary landscape conversion programs can generate substantial water savings. The most significant result is that the most effective way to ensure long term, sustainable reductions in water consumption in a growing city without changing water prices is to support the construction of water efficient infrastructure.
ContributorsBrelsford, Christina M (Author) / Abbott, Joshua K (Thesis advisor) / York, Abigail M (Thesis advisor) / Hanemann, W. Michael (Committee member) / McPherson, Timothy (Committee member) / Arizona State University (Publisher)
Created2014
155929-Thumbnail Image.png
Description
Studies of governance have focused on the interactions among diverse actors while implicitly recognizing the role of power within those relationships. Explicit power analyses of water governance coordination are needed to better understand the conditions for and barriers to sustainability. I therefore utilized a novel conceptual framework to analyze vertical

Studies of governance have focused on the interactions among diverse actors while implicitly recognizing the role of power within those relationships. Explicit power analyses of water governance coordination are needed to better understand the conditions for and barriers to sustainability. I therefore utilized a novel conceptual framework to analyze vertical and horizontal governance, along with power, to address how governance interactions affect water sustainability in terms of (1) interactions among governance actors across local to state levels; (2) coordination among actors at the local level; and (3) the exercise of power among assorted actors. I adopted a qualitative case study methodology that involved triangulating interview transcripts, policy documents, and other data in the case study area of Prescott, Arizona.

Across governance scales, my analysis found that informational and contentious interactions occur around water management plans, groundwater withdrawal fees, and growth debates due to the stipulations of Arizona’s Groundwater Management Act. Locally, municipalities in different groundwater basins coordinate by pooling resources for water development due to shared growth visions. However, municipalities within the same groundwater basin are divided in their pursuit of the state-mandated goal of safe yield due to discontent arising from differing growth visions, libertarian values of water control, and unequal responsibilities among actors in conserving water or monitoring use. Finally, local and state actors exercise power through litigation, legislation, and political processes to pursue their interests, thereby limiting coordination for water sustainability.

My explicit analysis of power reveals that coordination occurs not just because of water policies but due to interest-based water narratives (growth and libertarian). The emphasis of growth proponents on supply augmentation and libertarian opposition to regulations pose significant barriers to water sustainability. Successful policy-based pursuits of water sustainability will, thus, require an acknowledgment of these management asymmetries and commitments to addressing them.
ContributorsAyodele, Deborah Olufunmilola (Author) / Larson, Kelli L (Thesis advisor) / Bolin, Robert (Committee member) / Manuel-Navarrete, David (Committee member) / Arizona State University (Publisher)
Created2017
154570-Thumbnail Image.png
Description
This research investigates the dialectical relationships between water and social power. I analyze how the coupled processes of development, water privatization, and climate change have been shaping water struggles in Chile. I focus on how these hydro-struggles are reconfiguring everyday practices of water management at the community scale and the

This research investigates the dialectical relationships between water and social power. I analyze how the coupled processes of development, water privatization, and climate change have been shaping water struggles in Chile. I focus on how these hydro-struggles are reconfiguring everyday practices of water management at the community scale and the ways in which these dynamics may contribute to more democratic and sustainable modes of water governance at both regional and national scales. Using a historical-geographical and multi-sited ethnographical lens, I investigate how different geographical projects (forestry, irrigated agriculture, and hydropower) were deployed in the Biobio and Santiago regions of Chile during the last 200 hundred years. I analyze how since the 1970s, these hydro-modernization projects have been gradually privatized, which in turn has led to environmental degradation and water dispossession affecting peasants and other rural populations. I frame these transformations using the political-ecological notion of hydrosocial assemblages produced by the different stages of the hydro-modernity—Liberal, Keynesian, Socialist, Neoliberal. I detail how these stages have repeatedly reshaped Chilean hydrosocial processes. I unpack the stages through the analysis of forestry, irrigation and hydropower developments in the central and southern regions of Chile, emphasizing how they have produced both uneven socio-spatial development and growing hydrosocial metabolic rifts, particularly during neoliberal hydro-modernity (1981-2015). Hydrosocial metabolic rifts occur when people have been separated or dispossessed from direct access and control of their traditional water resources. I conclude by arguing that there is a need to overcome the current unsustainable market-led approach to water governance. I propose the notion of a 'commons hydro-modernity', which is based on growing environmental and water social movements that are promoting a socio-spatial project to reassemble Chilean hydrosocial metabolic relations in a more democratic and sustainable way.
ContributorsTorres Salinas, Robinson (Author) / Bolin, Bob (Thesis advisor) / Manuel-Navarrete, David (Committee member) / Larson, Kelli (Committee member) / Arizona State University (Publisher)
Created2016
Description

Healthcare infection control has led to increased utilization of disposable medical devices, which has subsequently led to increased adverse environmental effects attributed to healthcare and its supply chain. In dental practice, the dental bur is a commonly used instrument that can either be reused or used once and then disposed.

Healthcare infection control has led to increased utilization of disposable medical devices, which has subsequently led to increased adverse environmental effects attributed to healthcare and its supply chain. In dental practice, the dental bur is a commonly used instrument that can either be reused or used once and then disposed. To evaluate the disparities in environmental impacts of disposable and reusable dental burs, a comparative life cycle assessment (LCA) was performed. The comparative LCA evaluated a reusable dental bur (specifically, a 2.00mm Internal Irrigation Pilot Drill) reused 30 instances versus 30 identical burs used as disposables.

The LCA methodology was performed using framework described by the International Organization for Standardization (ISO) 14040 series. Sensitivity analyses were performed with respect to ultrasonic and autoclave loading. Findings from this research showed that when the ultrasonic and autoclave are loaded optimally, reusable burs had 40% less of an environmental impact than burs used on a disposable basis. When the ultrasonic and autoclave were loaded to 66% capacity, there was an environmental breakeven point between disposable and reusable burs. Eutrophication, carcinogenic impacts, non-carcinogenic impacts, and acidification were limited when cleaning equipment (i.e., ultrasonic and autoclave) were optimally loaded. Additionally, the bur’s packaging materials contributed more negative environmental impacts than the production and use of the bur itself. Therefore, less materially-intensive packaging should be used. Specifically, the glass fiber reinforced plastic casing should be substituted for a material with a reduced environmental footprint.

Created2013-05
Description

This paper researches an attributional life-cycle assessment (ALCA) of a commonly used consumer product, specifically one bottle of 8-ounce Aveeno Daily Moisturizing Lotion. This LCA analyzed the impacts associated from cradle-to-grave processes of one bottle of Aveeno Daily Moisturizing lotion, including raw material extraction, raw material processing, manufacturing, packaging, distribution,

This paper researches an attributional life-cycle assessment (ALCA) of a commonly used consumer product, specifically one bottle of 8-ounce Aveeno Daily Moisturizing Lotion. This LCA analyzed the impacts associated from cradle-to-grave processes of one bottle of Aveeno Daily Moisturizing lotion, including raw material extraction, raw material processing, manufacturing, packaging, distribution, use and end-of-life of both the lotion itself as well as the bottle.

To successfully propose end-of-life management techniques, three different disposal options were analyzed: landfill disposal, incineration and recycling. All processes included in the system boundary were compared across three main midpoint impact categories: Fossil depletion, Freshwater depletion and Global Warming Potential. Results showed that transportation of the product outweighed all other processes in regard to the three impact categories. When all processes but transportation were considered, results showed that raw material extraction and processing was the significant contributor to the three impact categories.

This LCA therefore proposes that Aveeno take advantage of local products to limit the need for excessive transportation. Furthermore, sustainable forms of transportation could be used to offset the product’s overall environmental impacts. In regard to end-of-life disposal options, Aveeno could market recycling techniques to push forth the reuse of their plastic bottle. Considering costs, glass bottle use could also be considered to possibly implement a send-back and reuse option for consumers.

Created2014-06-13
Description

The ultimate goal of this LCA is to give Arizona State University specific advice on possible changes in lighting systems that will reduce environmental impacts and support ASU’s sustainability efforts. The aim is to assess the potential for a decrease in specific environmental impacts (CO2 emissions and energy use) and

The ultimate goal of this LCA is to give Arizona State University specific advice on possible changes in lighting systems that will reduce environmental impacts and support ASU’s sustainability efforts. The aim is to assess the potential for a decrease in specific environmental impacts (CO2 emissions and energy use) and economic impact (cost) from changing to a different type of lighting in a prototypical classroom in Wrigley Hall. The scope of this assessment is to analyze the impacts of T8 lamps lasting 50,000 hours. Thus, a functional unit was defined as 50,000 hours of use, maintaining roughly 825 lumens. To put this in perspective, 50,000 hours is equivalent to 8 hours of use per day, 365 days per year, for approximately 17.1 years.

Created2014-06-13
Description

As average temperatures and occurrences of extreme heat events increase in the Southwest, the water infrastructure that was designed to operate under historical temperature ranges may become increasingly vulnerable to component and operational failures. For each major component along the life cycle of water in an urban water infrastructural system,

As average temperatures and occurrences of extreme heat events increase in the Southwest, the water infrastructure that was designed to operate under historical temperature ranges may become increasingly vulnerable to component and operational failures. For each major component along the life cycle of water in an urban water infrastructural system, potential failure events and their semi-quantitative probabilities of occurrence were estimated from interview responses of water industry professionals. These failure events were used to populate event trees to determine the potential pathways to cascading failures in the system. The probabilities of the cascading failure scenarios under future conditions were then calculated and compared to the probabilities of scenarios under current conditions to assess the increased vulnerability of the system. We find that extreme heat events can increase the vulnerability of water systems significantly and that there are ways for water infrastructure managers to proactively mitigate these vulnerabilities before problems occur.

Description

The Food-Energy-Water (FEW) nexus is the interaction and the interdependence of the food, energy and water systems. These interdependencies exist in all parts of the world yet little knowledge exists of the complexity within these interdependent systems. Using Arizona as a case study, systems-oriented frameworks are examined for their value

The Food-Energy-Water (FEW) nexus is the interaction and the interdependence of the food, energy and water systems. These interdependencies exist in all parts of the world yet little knowledge exists of the complexity within these interdependent systems. Using Arizona as a case study, systems-oriented frameworks are examined for their value in revealing the complexity of FEW nexus. Industrial Symbiosis, Life Cycle Assessment (LCA) and Urban Metabolism are examined. The Industrial Symbiosis presents the system as purely a technical one and looks only at technology and hard infrastructure.

The LCA framework takes a reductionist approach and tries to make the system manageable by setting boundary conditions. This allows the frameworks to analyze the soft infrastructure as well as the hard infrastructure. The LCA framework also helps determine potential impact. Urban Metabolism analyzes the interactions between the different infrastructures within the confines of the region and retains the complexity of the system. It is concluded that a combination of the frameworks may provide the most insight in revealing the complexity of nexus and guiding decision makers towards improving sustainability and resilience.

Description

In the economic crisis Detroit has been enduring for many decades, a unique crisis has emerged with the provision of water that is normally not seen in the developed world. The oversized, deteriorating, and underfunded water provision system has been steadily accruing debt for the water utility since population began

In the economic crisis Detroit has been enduring for many decades, a unique crisis has emerged with the provision of water that is normally not seen in the developed world. The oversized, deteriorating, and underfunded water provision system has been steadily accruing debt for the water utility since population began to decrease in the 1950s. As a result, the utility has instated rate increases and aggressive water shut off policies for non-paying residents. Residents have consequentially claimed that their human right to water has been breeched.

In this report, I analyze possible solutions to the water crisis from both the water utility and resident perspectives. Since all utility management solutions have very serious limitations on either side of the argument, I have chosen a set of technologies to consider as a part of an impact mitigation plan that can provide alternative sources of water for the people who no longer can rely on municipal water. I additionally propose an adaptive management plan to evaluate the effects of using these technologies in the long-term. The monitoring of the effects of technological mitigations might also help determine if sustainability (efficiency and equity) could be an attainable long-term solution to Detroit’s water crisis.