Matching Items (6)
Filtering by

Clear all filters

151846-Thumbnail Image.png
Description
Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased

Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased efficiency, but at the cost of distortion. Class AB amplifiers have low efficiency, but high linearity. By modulating the supply voltage of a Class AB amplifier to make a Class H amplifier, the efficiency can increase while still maintaining the Class AB level of linearity. A 92dB Power Supply Rejection Ratio (PSRR) Class AB amplifier and a Class H amplifier were designed in a 0.24um process for portable audio applications. Using a multiphase buck converter increased the efficiency of the Class H amplifier while still maintaining a fast response time to respond to audio frequencies. The Class H amplifier had an efficiency above the Class AB amplifier by 5-7% from 5-30mW of output power without affecting the total harmonic distortion (THD) at the design specifications. The Class H amplifier design met all design specifications and showed performance comparable to the designed Class AB amplifier across 1kHz-20kHz and 0.01mW-30mW. The Class H design was able to output 30mW into 16Ohms without any increase in THD. This design shows that Class H amplifiers merit more research into their potential for increasing efficiency of audio amplifiers and that even simple designs can give significant increases in efficiency without compromising linearity.
ContributorsPeterson, Cory (Author) / Bakkaloglu, Bertan (Thesis advisor) / Barnaby, Hugh (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
150406-Thumbnail Image.png
Description
The global demand and trade for fruits and vegetables is increasing at national and international levels. The fresh fruits and vegetables supply chain are highly vulnerable to contamination and can be easily spoiled due to their perishable nature. Due to increases in fresh fruit and vegetable trade shipment volume between

The global demand and trade for fruits and vegetables is increasing at national and international levels. The fresh fruits and vegetables supply chain are highly vulnerable to contamination and can be easily spoiled due to their perishable nature. Due to increases in fresh fruit and vegetable trade shipment volume between countries, the fresh food supply chain area is the highly susceptible and frequently prone to food contamination. The inability of firms in the fresh food business to have a good supply chain visibility and tracking system is one of the prominent reasons for food safety failure. Therefore, in order to avoid food safety risk and to supply safe food to consumers, the firms need to have an efficient traceability system in their supply chain. Most of the research in the food supply chain area suggests the implementation of a highly efficient tracking system called RFID (Radio frequency identification) technology to firms in the food industry. The medium scale firms in the fresh food supply chain business are skeptical about implementing the RFID technology equipped traceability system due to its high cost of investment and low margins on fresh food sales. This research developed two methods to measure the probability of food safety risk in food supply chain. These methods use the information gain from RFID traceability systems as a tool to measure the amount of risk in the fresh food supply chain. The stochastic optimization model is applied in this study to determine the risk premium by investing in RFID technology over the electronic barcode traceability system. The results show that there is a reduction in buyer (Type II error) and seller risk (Type I error) for RFID technology employed traceability system compared to electronic barcode system. It is found from stochastic optimization results that there is a positive risk premium by investing in RFID traceability system over the current systems and suggests the implementation of RFID traceability system for complex medium scale fresh produce imports to reduce the food safety risks. This research encourages the food industries and government agencies to evaluate alternatives to update supply chain system with RFID technology.
ContributorsJanke, Deepak Kumar (Author) / Nganje, William (Thesis advisor) / Schmitz, Troy (Committee member) / Thor, Eric (Committee member) / Arizona State University (Publisher)
Created2011
151246-Thumbnail Image.png
Description
Class D Amplifiers are widely used in portable systems such as mobile phones to achieve high efficiency. The demands of portable electronics for low power consumption to extend battery life and reduce heat dissipation mandate efficient, high-performance audio amplifiers. The high efficiency of Class D amplifiers (CDAs) makes them particularly

Class D Amplifiers are widely used in portable systems such as mobile phones to achieve high efficiency. The demands of portable electronics for low power consumption to extend battery life and reduce heat dissipation mandate efficient, high-performance audio amplifiers. The high efficiency of Class D amplifiers (CDAs) makes them particularly attractive for portable applications. The Digital class D amplifier is an interesting solution to increase the efficiency of embedded systems. However, this solution is not good enough in terms of PWM stage linearity and power supply rejection. An efficient control is needed to correct the error sources in order to get a high fidelity sound quality in the whole audio range of frequencies. A fundamental analysis on various error sources due to non idealities in the power stage have been discussed here with key focus on Power supply perturbations driving the Power stage of a Class D Audio Amplifier. Two types of closed loop Digital Class D architecture for PSRR improvement have been proposed and modeled. Double sided uniform sampling modulation has been used. One of the architecture uses feedback around the power stage and the second architecture uses feedback into digital domain. Simulation & experimental results confirm that the closed loop PSRR & PS-IMD improve by around 30-40 dB and 25 dB respectively.
ContributorsChakraborty, Bijeta (Author) / Bakkaloglu, Bertan (Thesis advisor) / Garrity, Douglas (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2012
151216-Thumbnail Image.png
Description
The unpleasant bitter taste found in many nutritious vegetables may deter people from consuming a healthy diet. We investigated individual differences in taste perception and whether these differences influence the effectiveness of bitterness masking. To test whether phenylthiocarbamide (PTC) `supertasters' also taste salt and sugar with greater intensity, as suggested

The unpleasant bitter taste found in many nutritious vegetables may deter people from consuming a healthy diet. We investigated individual differences in taste perception and whether these differences influence the effectiveness of bitterness masking. To test whether phenylthiocarbamide (PTC) `supertasters' also taste salt and sugar with greater intensity, as suggested by Bartoshuk and colleagues (2004), we infused strips of paper with salt water or sugar water. The bitterness rating of the PTC strip had a significant positive linear relationship with ratings of both the intensity of sweet and salt, but the effect sizes were very low, suggesting that the PTC strip does not give a complete picture of tasting ability. Next we investigated whether various seasonings could mask the bitter taste of vegetables and whether this varied with tasting ability. We found that sugar decreased bitterness and lemon decreased liking for vegetables of varying degrees of bitterness. The results did not differ by ability to taste any of the flavors. Therefore, even though there are remarkable individual differences in taste perception, sugar can be used to improve the initial palatability of vegetables and increase their acceptance and consumption.
ContributorsWilkie, Lynn Melissa (Author) / Phillips, Elizabeth D. (Thesis advisor) / Cohen, Adam (Committee member) / Johnston, Carol (Committee member) / Arizona State University (Publisher)
Created2012
154094-Thumbnail Image.png
Description
In this thesis, a digital input class D audio amplifier system which has the ability

to reject the power supply noise and nonlinearly of the output stage is presented. The main digital class D feed-forward path is using the fully-digital sigma-delta PWM open loop topology. Feedback loop is used to suppress

In this thesis, a digital input class D audio amplifier system which has the ability

to reject the power supply noise and nonlinearly of the output stage is presented. The main digital class D feed-forward path is using the fully-digital sigma-delta PWM open loop topology. Feedback loop is used to suppress the power supply noise and harmonic distortions. The design is using global foundry 0.18um technology.

Based on simulation, the power supply rejection at 200Hz is about -49dB with

81dB dynamic range and -70dB THD+N. The full scale output power can reach as high as 27mW and still keep minimum -68dB THD+N. The system efficiency at full scale is about 82%.
ContributorsBai, Jing (Author) / Bakkaloglu, Bertan (Thesis advisor) / Arizona State University (Publisher)
Created2015
154714-Thumbnail Image.png
Description
With the push towards interdisciplinary approaches, there has been tremendous growth of scholarship in the comparative ethnic studies field. From studies on multiracial people, to residential segregation, to the study of multiracial spaces, there is a lot to say about cross-cultural experiences. “Te de Boba” explores the relationship between identity,

With the push towards interdisciplinary approaches, there has been tremendous growth of scholarship in the comparative ethnic studies field. From studies on multiracial people, to residential segregation, to the study of multiracial spaces, there is a lot to say about cross-cultural experiences. “Te de Boba” explores the relationship between identity, race, and ethnicity of millennials through a food studies lens. In particular, I analyze the role of food spaces and food pathways in developing identity and conceptions of race and ethnicity. My research site consists of a small business, a boba tea shop in Baldwin Park, California: What happens when a boba shop opens up in downtown Baldwin Park, a predominantly Latinx community? How do interethnic relationships shape the structure and city landscape of Baldwin Park, and how do these experiences in turn shape self-identity among millennials? I draw from qualitative interviews, cognitive mapping, and surveys conducted within the boba shop to understand millennial identity formation in Baldwin Park. Millennials growing up in Baldwin Park experience unique relationships between cultures, foods, and lifestyles that cross ethnic and racial barriers, creating new forms of community, which I call hub cities. I develop “hub cities” as new terminology for discussing suburban spaces that foster a sense of community within suburban areas that challenges and break down popular discourse of race and ethnicity, giving way for youth creation of alternative discourses on race and ethnicity, consequently shaping the way they form self-identity.
ContributorsSantizo, Natalie (Author) / Cheng, Wendy (Thesis advisor) / Guevarra, Jr., Rudy (Committee member) / Fonow, Mary M (Committee member) / Arizona State University (Publisher)
Created2016