Matching Items (2)
Filtering by

Clear all filters

152041-Thumbnail Image.png
Description
The characteristics of the wintertime 500hPa height surface, the level of non-divergence and used for identifying/observing synoptic-scale features (ridges and troughs), and their impact on precipitation are of significance to forecasters, natural resource managers and planners across the southwestern United States. For this study, I evaluated the location of the

The characteristics of the wintertime 500hPa height surface, the level of non-divergence and used for identifying/observing synoptic-scale features (ridges and troughs), and their impact on precipitation are of significance to forecasters, natural resource managers and planners across the southwestern United States. For this study, I evaluated the location of the 500hPa mean Pacific ridge axis over the winter for the period of 1948/49 to 2011/12 and derived the mean ridge axis in terms of location (longitude) and intensity (geopotential meters) from the NCEP/NCAR Reanalysis dataset. After deriving a mean ridge axis climatology and analyzing its behavior over time, I correlated mean location and intensity values to observed wintertime precipitation in select U.S. Climate Divisions in Arizona, Colorado, Nevada, Utah and New Mexico. This resulted in two findings. First specific to the 500hPa ridge behavior, the ridge has been moving eastward and also has been intensifying through time. Second, results involving correlation tests between mean ridge location and intensity indicate precipitation across the selected Southwest Climate Divisions are strongly related to mean ridge intensity slightly more than ridge location. The relationships between mean ridge axis and observed precipitation also are negative, indicating an increase of one of the ridge parameters (i.e. continued eastward movement or intensification) lead to drier winter seasons across the Southwest. Increased understanding of relationships between upper-level ridging and observed wintertime precipitation aids in natural resource planning for an already arid region that relies heavily on winter precipitation.
ContributorsNolte, Jessica Marie (Author) / Cerveny, Randall S. (Thesis advisor) / Selover, Nancy J. (Committee member) / Brazel, Anthony J. (Committee member) / Arizona State University (Publisher)
Created2013
152115-Thumbnail Image.png
Description
Biological soil crusts (BSCs), topsoil microbial assemblages typical of arid land ecosystems, provide essential ecosystem services such as soil fertilization and stabilization against erosion. Cyanobacteria and lichens, sometimes mosses, drive BSC as primary producers, but metabolic activity is restricted to periods of hydration associated with precipitation. Climate models for the

Biological soil crusts (BSCs), topsoil microbial assemblages typical of arid land ecosystems, provide essential ecosystem services such as soil fertilization and stabilization against erosion. Cyanobacteria and lichens, sometimes mosses, drive BSC as primary producers, but metabolic activity is restricted to periods of hydration associated with precipitation. Climate models for the SW United States predict changes in precipitation frequency as a major outcome of global warming, even if models differ on the sign and magnitude of the change. BSC organisms are clearly well adapted to withstand desiccation and prolonged drought, but it is unknown if and how an alteration of the precipitation frequency may impact community composition, diversity, and ecosystem functions. To test this, we set up a BSC microcosm experiment with variable precipitation frequency treatments using a local, cyanobacteria-dominated, early-succession BSC maintained under controlled conditions in a greenhouse. Precipitation pulse size was kept constant but 11 different drought intervals were imposed, ranging between 416 to 3 days, during a period of 416 days. At the end of the experiments, bacterial community composition was analyzed by pyrosequencing of the 16s rRNA genes in the community, and a battery of functional assays were used to evaluate carbon and nitrogen cycling potentials. While changes in community composition were neither marked nor consistent at the Phylum level, there was a significant trend of decreased diversity with increasing precipitation frequency, and we detected particular bacterial phylotypes that responded to the frequency of precipitation in a consistent manner (either positively or negatively). A significant trend of increased respiration with increasingly long drought period was detected, but BSC could recover quickly from this effect. Gross photosynthesis, nitrification and denitrification remained essentially impervious to treatment. These results are consistent with the notion that BSC community structure adjustments sufficed to provide significant functional resilience, and allow us to predict that future alterations in precipitation frequency are unlikely to result in severe impacts to BSC biology or ecological relevance.
ContributorsMyers, Natalie Kristine (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Hall, Sharon (Committee member) / Turner, Benjamin (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2013