Matching Items (4)
Filtering by

Clear all filters

157239-Thumbnail Image.png
Description
As urban populations rapidly increase in an era of climate change and multiple social and environmental uncertainties, scientists and governments are cultivating knowledge and solutions for the sustainable growth and maintenance of cities. Although substantial literature focuses on urban water resource management related to both human and ecological sustainability, few

As urban populations rapidly increase in an era of climate change and multiple social and environmental uncertainties, scientists and governments are cultivating knowledge and solutions for the sustainable growth and maintenance of cities. Although substantial literature focuses on urban water resource management related to both human and ecological sustainability, few studies assess the unique role of waterway restorations to bridge anthropocentric and ecological concerns in urban environments. To address this gap, my study addressed if well-established sustainability principles are evoked during the nascent discourse of recently proposed urban waterway developments along over fifty miles of Arizona’s Salt River. In this study, a deductive content analysis is used to illuminate the emergence of sustainability principles, the framing of the redevelopment, and to illuminate macro-environmental discourses. Three sustainability principles dominated the discourse: civility and democratic governance; livelihood sufficiency and opportunity; and social-ecological system integrity. These three principles connected to three macro-discourses: economic rationalism; democratic pragmatism; and ecological modernity. These results hold implications for policy and theory and inform urban development processes for improvements to sustainability. As continued densification, in-fill and rapid urbanization continues in the 21st century, more cities are looking to reconstruct urban riverways. Therefore, the emergent sustainability discourse regarding potential revitalizations along Arizona’s Salt River is a manifestation of how waterways are perceived, valued, and essential to urban environments for anthropocentric and ecological needs.
ContributorsHorvath, Veronica (Author) / White, Dave D (Thesis advisor) / Mirumachi, Naho (Committee member) / Childers, Dan (Committee member) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2019
154957-Thumbnail Image.png
Description
Cities are, at once, a habitat for humans, a center of economic production, a direct consumer of natural resources in the local environment, and an indirect consumer of natural resources at regional, national, and global scales. These processes do not take place in isolation: rather they are nested within complex

Cities are, at once, a habitat for humans, a center of economic production, a direct consumer of natural resources in the local environment, and an indirect consumer of natural resources at regional, national, and global scales. These processes do not take place in isolation: rather they are nested within complex coupled natural-human (CNH) systems that have nearby and distant teleconnections. Infrastructure systems—roads, electrical grids, pipelines, damns, and aqueducts, to name a few—have been built to convey and store these resources from their point of origin to their point of consumption. Traditional hard infrastructure systems are complemented by soft infrastructure, such as governance, legal, economic, and social systems, which rely upon the conveyance of information and currency rather than a physical commodity, creating teleconnections that link multiple CNH systems. The underlying structure of these systems allows for the creation of novel network methodologies to study the interdependencies, feedbacks, and timescales between direct and indirect resource consumers and producers; to identify potential vulnerabilities within the system; and to model the configuration of ideal system states. Direct and indirect water consumption provides an ideal indicator for such study because water risk is highly location-based in terms of geography, climate, economics, and cultural norms and is manifest at multiple geographic scales. Taken together, the CNH formed by economic trade and indirect water exchange networks create hydro-economic networks. Given the importance of hydro-economic networks for human well-being and economic production, this dissertation answers the overarching research question: What information do we gain from analyzing virtual water trade at the systems level rather than the component city level? Three studies are presented with case studies pertaining to the State of Arizona. The first derives a robust methodology to disaggregate indirect water flows to subcounty geographies. The second creates city-level metrics of hydro-economic vulnerability and functional diversity. The third analyzes the physical, legal, and economic allocation of a shared river basin to identify vulnerable nodes in river basin hydro-economic networks. This dissertation contributes to the literature through the creation of novel metrics to measure hydro-economic network properties and to generate insight into potential US hydro-economic shocks.
ContributorsRushforth, Richard Ray (Author) / Ruddell, Benajmin L (Thesis advisor) / Allenby, Braden (Committee member) / Chester, Mikhail (Committee member) / Seager, Thomas (Committee member) / Arizona State University (Publisher)
Created2016
Description

Better methods are necessary to fully account for anthropogenic impacts on ecosystems and the essential services provided by ecosystems that sustain human life. Current methods for assessing sustainability, such as life cycle assessment (LCA), typically focus on easily quantifiable indicators such as air emissions with no accounting for the essential

Better methods are necessary to fully account for anthropogenic impacts on ecosystems and the essential services provided by ecosystems that sustain human life. Current methods for assessing sustainability, such as life cycle assessment (LCA), typically focus on easily quantifiable indicators such as air emissions with no accounting for the essential ecosystem benefits that support human or industrial processes. For this reason, more comprehensive, transparent, and robust methods are necessary for holistic understanding of urban technosphere and ecosphere systems, including their interfaces. Incorporating ecosystem service indicators into LCA is an important step in spanning this knowledge gap.

For urban systems, many built environment processes have been investigated but need to be expanded with life cycle assessment for understanding ecosphere impacts. To pilot these new methods, a material inventory of the building infrastructure of Phoenix, Arizona can be coupled with LCA to gain perspective on the impacts assessment for built structures in Phoenix. This inventory will identify the origins of materials stocks, and the solid and air emissions waste associated with their raw material extraction, processing, and construction and identify key areas of future research necessary to fully account for ecosystem services in urban sustainability assessments. Based on this preliminary study, the ecosystem service impacts of metropolitan Phoenix stretch far beyond the county boundaries. A life cycle accounting of the Phoenix’s embedded building materials will inform policy and decision makers, assist with community education, and inform the urban sustainability community of consequences.