Matching Items (9)
Filtering by

Clear all filters

152588-Thumbnail Image.png
Description
A methodology is developed that integrates institutional analysis with Life Cycle Assessment (LCA) to identify and overcome barriers to sustainability transitions and to bridge the gap between environmental practitioners and decisionmakers. LCA results are rarely joined with analyses of the social systems that control or influence decisionmaking and policies. As

A methodology is developed that integrates institutional analysis with Life Cycle Assessment (LCA) to identify and overcome barriers to sustainability transitions and to bridge the gap between environmental practitioners and decisionmakers. LCA results are rarely joined with analyses of the social systems that control or influence decisionmaking and policies. As a result, LCA conclusions generally lack information about who or what controls different parts of the system, where and when the processes' environmental decisionmaking happens, and what aspects of the system (i.e. a policy or regulatory requirement) would have to change to enable lower environmental impact futures. The value of the combined institutional analysis and LCA (the IA-LCA) is demonstrated using a case study of passenger transportation in the Phoenix, Arizona metropolitan area. A retrospective LCA is developed to estimate how roadway investment has enabled personal vehicle travel and its associated energy, environmental, and economic effects. Using regional travel forecasts, a prospective life cycle inventory is developed. Alternative trajectories are modeled to reveal future "savings" from reduced roadway construction and vehicle travel. An institutional analysis matches the LCA results with the specific institutions, players, and policies that should be targeted to enable transitions to these alternative futures. The results show that energy, economic, and environmental benefits from changes in passenger transportation systems are possible, but vary significantly depending on the timing of the interventions. Transition strategies aimed at the most optimistic benefits should include 1) significant land-use planning initiatives at the local and regional level to incentivize transit-oriented development infill and urban densification, 2) changes to state or federal gasoline taxes, 3) enacting a price on carbon, and 4) nearly doubling vehicle fuel efficiency together with greater market penetration of alternative fuel vehicles. This aggressive trajectory could decrease the 2050 energy consumption to 1995 levels, greenhouse gas emissions to 1995, particulate emissions to 2006, and smog-forming emissions to 1972. The potential benefits and costs are both private and public, and the results vary when transition strategies are applied in different spatial and temporal patterns.
ContributorsKimball, Mindy (Author) / Chester, Mikhail (Thesis advisor) / Allenby, Braden (Committee member) / Golub, Aaron (Committee member) / Arizona State University (Publisher)
Created2014
157239-Thumbnail Image.png
Description
As urban populations rapidly increase in an era of climate change and multiple social and environmental uncertainties, scientists and governments are cultivating knowledge and solutions for the sustainable growth and maintenance of cities. Although substantial literature focuses on urban water resource management related to both human and ecological sustainability, few

As urban populations rapidly increase in an era of climate change and multiple social and environmental uncertainties, scientists and governments are cultivating knowledge and solutions for the sustainable growth and maintenance of cities. Although substantial literature focuses on urban water resource management related to both human and ecological sustainability, few studies assess the unique role of waterway restorations to bridge anthropocentric and ecological concerns in urban environments. To address this gap, my study addressed if well-established sustainability principles are evoked during the nascent discourse of recently proposed urban waterway developments along over fifty miles of Arizona’s Salt River. In this study, a deductive content analysis is used to illuminate the emergence of sustainability principles, the framing of the redevelopment, and to illuminate macro-environmental discourses. Three sustainability principles dominated the discourse: civility and democratic governance; livelihood sufficiency and opportunity; and social-ecological system integrity. These three principles connected to three macro-discourses: economic rationalism; democratic pragmatism; and ecological modernity. These results hold implications for policy and theory and inform urban development processes for improvements to sustainability. As continued densification, in-fill and rapid urbanization continues in the 21st century, more cities are looking to reconstruct urban riverways. Therefore, the emergent sustainability discourse regarding potential revitalizations along Arizona’s Salt River is a manifestation of how waterways are perceived, valued, and essential to urban environments for anthropocentric and ecological needs.
ContributorsHorvath, Veronica (Author) / White, Dave D (Thesis advisor) / Mirumachi, Naho (Committee member) / Childers, Dan (Committee member) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2019
137517-Thumbnail Image.png
Description
Transit-oriented developments (TODs) are a promising strategy to increase public transit use and, as a result, reduce personal car travel. By using TOD infill to increase urban population density and encourage transportation mode-shifting, the potential exists to reduce life-cycle per capita energy use and environmental impacts of the interdependent infrastructure

Transit-oriented developments (TODs) are a promising strategy to increase public transit use and, as a result, reduce personal car travel. By using TOD infill to increase urban population density and encourage transportation mode-shifting, the potential exists to reduce life-cycle per capita energy use and environmental impacts of the interdependent infrastructure systems. This project specifically examined the Gold Line of light rail and Orange Line of bus rapid transit in Los Angeles, CA.
ContributorsNahlik, Matthew John (Author) / Chester, Mikhail (Thesis director) / Pendyala, Ram (Committee member) / Pincetl, Stephanie (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor)
Created2013-05
154860-Thumbnail Image.png
Description
Given that more and more planned special events are hosted in urban areas, during which travel demand is considerably higher than usual, it is one of the most effective strategies opening public rapid transit lines and building park-and-ride facilities to allow visitors to park their cars and take buses to

Given that more and more planned special events are hosted in urban areas, during which travel demand is considerably higher than usual, it is one of the most effective strategies opening public rapid transit lines and building park-and-ride facilities to allow visitors to park their cars and take buses to the event sites. In the meantime, special event workforce often needs to make balances among the limitations of construction budget, land use and targeted travel time budgets for visitors. As such, optimizing the park-and-ride locations and capacities is critical in this process of transportation management during planned special event. It is also known as park-and-ride facility design problem.

This thesis formulates and solves the park-and-ride facility design problem for special events based on space-time network models. The general network design process with park-and-ride facilities location design is first elaborated and then mathematical programming formulation is established for special events. Meanwhile with the purpose of relax some certain hard constraints in this problem, a transformed network model which the hard park-and-ride constraints are pre-built into the new network is constructed and solved with the similar solution algorithm. In doing so, the number of hard constraints and level of complexity of the studied problem can be considerable reduced in some cases. Through two case studies, it is proven that the proposed formulation and solution algorithms can provide effective decision supports in selecting the locations and capabilities of park-and-ride facilities for special events.
ContributorsZhu, Nana (Author) / Zhou, Xuesong (Thesis advisor) / Lou, Yingyan (Committee member) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2016
154911-Thumbnail Image.png
Description
In the American Southwest, an area which already experiences a significant number of cooling degree days, anthropogenic climate change is expected to result in higher average temperatures and the increasing frequency, duration, and severity of heat waves. Climatological forecasts predict heat waves will increase by 150-840% in Los Angeles County,

In the American Southwest, an area which already experiences a significant number of cooling degree days, anthropogenic climate change is expected to result in higher average temperatures and the increasing frequency, duration, and severity of heat waves. Climatological forecasts predict heat waves will increase by 150-840% in Los Angeles County, California and 340-1800% in Maricopa County, Arizona. Heat exposure is known to increase both morbidity and mortality and rising temperatures represent a threat to public health. As a result there has been a significant amount of research into understanding existing socio-economic vulnerabilities to extreme heat which has identified population subgroups at greater risk of adverse health outcomes. Additionally, research has shown that man-made infrastructure can mitigate or exacerbate these health risks. However, while recent socio-economic heat vulnerability research has developed geospatially explicit results, research which links it directly with infrastructure characteristics is limited. Understanding how socio-economic vulnerabilities interact with infrastructure systems is a critical component to developing climate adaptation policies and programs which efficiently and effectively mitigate health risks associated with rising temperatures.

The availability of cooled space, whether public or private, has been shown to greatly reduce health risks associated with extreme heat. However, a lack of fine-scale knowledge of which households have access to this infrastructure results in an incomplete understanding of the health risks associated with heat. This knowledge gap could result in the misallocation of resources intended to mitigate negative health impacts associated with heat exposure. Additionally, when discussing accessibility to public cooled space there are underlying questions of mobility and mode choice. In addition to captive riders, a growing emphasis on walking, biking and public transit will likely expose additional choice riders to extreme temperatures and compound existing vulnerabilities to heat.
ContributorsFraser, Andrew Michael (Author) / Chester, Mikhail (Thesis advisor) / Seager, Thomas (Committee member) / Zhou, Xuesong (Committee member) / Kuby, Michael (Committee member) / Arizona State University (Publisher)
Created2016
155109-Thumbnail Image.png
Description
Bicyclist and pedestrian safety is a growing concern in San Francisco, CA,

especially given the increasing numbers of residents choosing to bike and walk. Sharing

the roads with automobiles, these alternative road users are particularly vulnerable to

sustain serious injuries. With this in mind, it is important to identify the factors that

influence the

Bicyclist and pedestrian safety is a growing concern in San Francisco, CA,

especially given the increasing numbers of residents choosing to bike and walk. Sharing

the roads with automobiles, these alternative road users are particularly vulnerable to

sustain serious injuries. With this in mind, it is important to identify the factors that

influence the severity of bicyclist and pedestrian injuries in automobile collisions. This

study uses traffic collision data gathered from California Highway Patrol’s Statewide

Integrated Traffic Records System (SWITRS) to predict the most important

determinants of injury severity, given that a collision has occurred. Multivariate binomial

logistic regression models were created for both pedestrian and bicyclist collisions, with

bicyclist/pedestrian/driver characteristics and built environment characteristics used as

the independent variables. Results suggest that bicycle infrastructure is not an important

predictor of bicyclist injury severity, but instead bicyclist age, race, sobriety, and speed

played significant roles. Pedestrian injuries were influenced by pedestrian and driver age

and sobriety, crosswalk use, speed limit, and the type of vehicle at fault in the collision.

Understanding these key determinants that lead to severe and fatal injuries can help

local communities implement appropriate safety measures for their most susceptible

road users.
ContributorsMcIntyre, Andrew (Author) / Salon, Deborah (Thesis advisor) / Kuby, Mike (Committee member) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2016
154957-Thumbnail Image.png
Description
Cities are, at once, a habitat for humans, a center of economic production, a direct consumer of natural resources in the local environment, and an indirect consumer of natural resources at regional, national, and global scales. These processes do not take place in isolation: rather they are nested within complex

Cities are, at once, a habitat for humans, a center of economic production, a direct consumer of natural resources in the local environment, and an indirect consumer of natural resources at regional, national, and global scales. These processes do not take place in isolation: rather they are nested within complex coupled natural-human (CNH) systems that have nearby and distant teleconnections. Infrastructure systems—roads, electrical grids, pipelines, damns, and aqueducts, to name a few—have been built to convey and store these resources from their point of origin to their point of consumption. Traditional hard infrastructure systems are complemented by soft infrastructure, such as governance, legal, economic, and social systems, which rely upon the conveyance of information and currency rather than a physical commodity, creating teleconnections that link multiple CNH systems. The underlying structure of these systems allows for the creation of novel network methodologies to study the interdependencies, feedbacks, and timescales between direct and indirect resource consumers and producers; to identify potential vulnerabilities within the system; and to model the configuration of ideal system states. Direct and indirect water consumption provides an ideal indicator for such study because water risk is highly location-based in terms of geography, climate, economics, and cultural norms and is manifest at multiple geographic scales. Taken together, the CNH formed by economic trade and indirect water exchange networks create hydro-economic networks. Given the importance of hydro-economic networks for human well-being and economic production, this dissertation answers the overarching research question: What information do we gain from analyzing virtual water trade at the systems level rather than the component city level? Three studies are presented with case studies pertaining to the State of Arizona. The first derives a robust methodology to disaggregate indirect water flows to subcounty geographies. The second creates city-level metrics of hydro-economic vulnerability and functional diversity. The third analyzes the physical, legal, and economic allocation of a shared river basin to identify vulnerable nodes in river basin hydro-economic networks. This dissertation contributes to the literature through the creation of novel metrics to measure hydro-economic network properties and to generate insight into potential US hydro-economic shocks.
ContributorsRushforth, Richard Ray (Author) / Ruddell, Benajmin L (Thesis advisor) / Allenby, Braden (Committee member) / Chester, Mikhail (Committee member) / Seager, Thomas (Committee member) / Arizona State University (Publisher)
Created2016
Description

Better methods are necessary to fully account for anthropogenic impacts on ecosystems and the essential services provided by ecosystems that sustain human life. Current methods for assessing sustainability, such as life cycle assessment (LCA), typically focus on easily quantifiable indicators such as air emissions with no accounting for the essential

Better methods are necessary to fully account for anthropogenic impacts on ecosystems and the essential services provided by ecosystems that sustain human life. Current methods for assessing sustainability, such as life cycle assessment (LCA), typically focus on easily quantifiable indicators such as air emissions with no accounting for the essential ecosystem benefits that support human or industrial processes. For this reason, more comprehensive, transparent, and robust methods are necessary for holistic understanding of urban technosphere and ecosphere systems, including their interfaces. Incorporating ecosystem service indicators into LCA is an important step in spanning this knowledge gap.

For urban systems, many built environment processes have been investigated but need to be expanded with life cycle assessment for understanding ecosphere impacts. To pilot these new methods, a material inventory of the building infrastructure of Phoenix, Arizona can be coupled with LCA to gain perspective on the impacts assessment for built structures in Phoenix. This inventory will identify the origins of materials stocks, and the solid and air emissions waste associated with their raw material extraction, processing, and construction and identify key areas of future research necessary to fully account for ecosystem services in urban sustainability assessments. Based on this preliminary study, the ecosystem service impacts of metropolitan Phoenix stretch far beyond the county boundaries. A life cycle accounting of the Phoenix’s embedded building materials will inform policy and decision makers, assist with community education, and inform the urban sustainability community of consequences.