Matching Items (9)
Filtering by

Clear all filters

142-Thumbnail Image.png
Description

Study Background: Researchers at ASU have determined that significant energy and environmental benefits are possible in the Phoenix metro area over the next 60 years from transit-oriented development along the current Valley Metro light rail line. The team evaluated infill densification outcomes when vacant lots and some dedicated surface parking

Study Background: Researchers at ASU have determined that significant energy and environmental benefits are possible in the Phoenix metro area over the next 60 years from transit-oriented development along the current Valley Metro light rail line. The team evaluated infill densification outcomes when vacant lots and some dedicated surface parking lots are repurposed for residential development. Life cycle building (construction, use, and energy production) and transportation (manufacturing, operation, and energy production) changes were included and energy use and greenhouse gas emissions were evaluated in addition to the potential for respiratory impacts and smog formation. All light rail infill scenarios are compared against new single family home construction in outlying areas.

Overview of Results: In the most conservative scenario, the Phoenix area can place 2,200 homes near light rail and achieve 9-15% reductions in energy use and emissions. By allowing multi-family apartments to fill vacant lots, 12,000 new dwelling units can be infilled achieving a 28-42% reduction. When surface lots are developed in addition to vacant lots then multi-family apartment buildings around light rail can deliver 30-46% energy and environmental reductions. These reductions occur even after new trains are put into operation to meet the increased demand.

Created2013
Description

Better methods are necessary to fully account for anthropogenic impacts on ecosystems and the essential services provided by ecosystems that sustain human life. Current methods for assessing sustainability, such as life cycle assessment (LCA), typically focus on easily quantifiable indicators such as air emissions with no accounting for the essential

Better methods are necessary to fully account for anthropogenic impacts on ecosystems and the essential services provided by ecosystems that sustain human life. Current methods for assessing sustainability, such as life cycle assessment (LCA), typically focus on easily quantifiable indicators such as air emissions with no accounting for the essential ecosystem benefits that support human or industrial processes. For this reason, more comprehensive, transparent, and robust methods are necessary for holistic understanding of urban technosphere and ecosphere systems, including their interfaces. Incorporating ecosystem service indicators into LCA is an important step in spanning this knowledge gap.

For urban systems, many built environment processes have been investigated but need to be expanded with life cycle assessment for understanding ecosphere impacts. To pilot these new methods, a material inventory of the building infrastructure of Phoenix, Arizona can be coupled with LCA to gain perspective on the impacts assessment for built structures in Phoenix. This inventory will identify the origins of materials stocks, and the solid and air emissions waste associated with their raw material extraction, processing, and construction and identify key areas of future research necessary to fully account for ecosystem services in urban sustainability assessments. Based on this preliminary study, the ecosystem service impacts of metropolitan Phoenix stretch far beyond the county boundaries. A life cycle accounting of the Phoenix’s embedded building materials will inform policy and decision makers, assist with community education, and inform the urban sustainability community of consequences.

Description

This study aims to quantify the environmental impacts of a hospital’s daily BMW disposal in the Phoenix, Arizona area. The sole option to dispose of BMW in Arizona is to sterilize the waste by sending it through an autoclave, and then dispose the sterilized waste in a landfill. This study

This study aims to quantify the environmental impacts of a hospital’s daily BMW disposal in the Phoenix, Arizona area. The sole option to dispose of BMW in Arizona is to sterilize the waste by sending it through an autoclave, and then dispose the sterilized waste in a landfill. This study used a Phoenix area hospital to create a start point for the waste and a general estimation of how much BMW the hospital disposes of. The system boundary for the LCA includes BMW generated at the Phoenix-area Hospital as it is travels to Stericycle, where it is autoclaved, and then transported to a landfill for disposal. The results of this retrospective, end-of-life LCA using this boundary enables hospital employees and policy makers to understand the environmental impact of placing items in the biohazardous waste bin.

Created2014-06-13
Description

Phoenix is the sixth most populated city in the United States and the 12th largest metropolitan area by population, with about 4.4 million people. As the region continues to grow, the demand for housing and jobs within the metropolitan area is projected to rise under uncertain climate conditions.

Undergraduate and graduate

Phoenix is the sixth most populated city in the United States and the 12th largest metropolitan area by population, with about 4.4 million people. As the region continues to grow, the demand for housing and jobs within the metropolitan area is projected to rise under uncertain climate conditions.

Undergraduate and graduate students from Engineering, Sustainability, and Urban Planning in ASU’s Urban Infrastructure Anatomy and Sustainable Development course evaluated the water, energy, and infrastructure changes that result from smart growth in Phoenix, Arizona. The Maricopa Association of Government's Sustainable Transportation and Land Use Integration Study identified a market for 485,000 residential dwelling units in the urban core. Household water and energy use changes, changes in infrastructure needs, and financial and economic savings are assessed along with associated energy use and greenhouse gas emissions.

The course project has produced data on sustainable development in Phoenix and the findings will be made available through ASU’s Urban Sustainability Lab.

ContributorsNahlik, Matthew (Author) / Chester, Mikhail Vin (Author) / Andrade, Luis (Author) / Archer, Melissa (Author) / Barnes, Elizabeth (Author) / Beguelin, Maria (Author) / Bonilla, Luis (Author) / Bubenheim, Stephanie (Author) / Burillo, Daniel (Author) / Cano, Alex (Author) / Guiley, Keith (Author) / Hamad, Moayyad (Author) / Heck, John (Author) / Helble, Parker (Author) / Hsu, Will (Author) / Jensen, Tate (Author) / Kannappan, Babu (Author) / Kirtley, Kelley (Author) / LaGrou, Nick (Author) / Loeber, Jessica (Author) / Mann, Chelsea (Author) / Monk, Shawn (Author) / Paniagua, Jaime (Author) / Prasad, Saransh (Author) / Stafford, Nicholas (Author) / Unger, Scott (Author) / Volo, Tom (Author) / Watson, Mathew (Author) / Woodruff, Abbie (Author) / Arizona State University. School of Sustainable Engineering and the Built Environment (Contributor) / Arizona State University. Center for Earth Systems Engineering and Management (Contributor)
Description

As average temperatures and occurrences of extreme heat events increase in the Southwest, the water infrastructure that was designed to operate under historical temperature ranges may become increasingly vulnerable to component and operational failures. For each major component along the life cycle of water in an urban water infrastructural system,

As average temperatures and occurrences of extreme heat events increase in the Southwest, the water infrastructure that was designed to operate under historical temperature ranges may become increasingly vulnerable to component and operational failures. For each major component along the life cycle of water in an urban water infrastructural system, potential failure events and their semi-quantitative probabilities of occurrence were estimated from interview responses of water industry professionals. These failure events were used to populate event trees to determine the potential pathways to cascading failures in the system. The probabilities of the cascading failure scenarios under future conditions were then calculated and compared to the probabilities of scenarios under current conditions to assess the increased vulnerability of the system. We find that extreme heat events can increase the vulnerability of water systems significantly and that there are ways for water infrastructure managers to proactively mitigate these vulnerabilities before problems occur.

Description

Mitigation of urban heat islands has become a goal for research and policy as urban environmental heat is a rapidly growing concern. Urban regions such as Phoenix, AZ are facing projected warming as urban populations grow and global climates warm (McCarthy et al. 2010), and severe urban heat can even

Mitigation of urban heat islands has become a goal for research and policy as urban environmental heat is a rapidly growing concern. Urban regions such as Phoenix, AZ are facing projected warming as urban populations grow and global climates warm (McCarthy et al. 2010), and severe urban heat can even lead to human mortality and morbidity (Berko et al. 2014). Increased urban heat may also have social and economic consequences such as by discouraging physical activity, reducing outdoor accessibility, and decreasing economic output (Stamatakis et al. 2013; Karner et al. 2015; Obradovich & Fowler 2017; Kjellstrom et al. 2009). Urban heat islands have been well documented in academic literature (Oke 1982; Arnfield 2003), and anthropogenic waste heat is often a major factor. The American Meteorological Society (2012) has said that anthropogenic waste heat may contribute “15 – 50 W/m2 to the local heat balance, and several hundred W/m2 in the center of large cities in cold climates and industrial areas.”

Anthropogenic waste heat from urban vehicle travel may be a notable contributor to the urban heat balance and the urban heat island effect, but little research has quantified and explored how changes in vehicle travel may influence local climates. Even with recent rapid improvements to engine efficiencies, modern automobiles still convert small amounts of fuel to useful energy. Typically, around two-thirds of energy from fuel in internal combustion engine vehicles is lost as waste heat through exhaust and coolant (Hsiao et al. 2010; Yu & Chau 2009; Saidur et al. 2009; Endo et al. 2007), and as much as 80% of fuel energy can be lost to waste heat under poor conditions (Orr et al. 2016). In addition, combustion of fuel generates water vapor and air pollution which may also affect the urban climate. Figure 1 displays where a typical combustion engine’s fuel energy is used and lost. There has been little research that quantifies the influence of vehicle travel on urban anthropogenic waste heat. According to Sailor and Lu (2004), most cities have peak anthropogenic waste heat values between 30 and 60 W m-2 (averaged across city) and heating from vehicles could make up as much as 62% of the total in summer months. Additionally, they found that vehicle waste heat could account for up to 300 W m-2 during rush hours over freeways. In another study, Hart & Sailor (2009) used in situ measurements in Portland, OR to evaluate spatial variability of air temperatures on urban roadways. They found that air masses near major roadways are some of the warmest in the region. Although some of the warming is attributed to pavement characteristics (imperviousness, low albedo), an average increase of 1.3 C was observed on weekdays relative to weekends along roadways. The authors offer increased weekday traffic density and building use as the likely contributors to this discrepancy. These previous studies indicates that vehicle related waste heat could be an important consideration in the urban energy balance. If significant, there may exist viable strategies to reduce anthropogenic waste heat from urban vehicle travel by increasing the fleet fuel economy and shifting to electric vehicles. This could offer cooling in urban areas around roadways were pedestrians are often found. Figure 2 visually demonstrates waste heat from vehicles (including an electric vehicle) in two thermal images.

Created2018-01-15
Description

The Food-Energy-Water (FEW) nexus is the interaction and the interdependence of the food, energy and water systems. These interdependencies exist in all parts of the world yet little knowledge exists of the complexity within these interdependent systems. Using Arizona as a case study, systems-oriented frameworks are examined for their value

The Food-Energy-Water (FEW) nexus is the interaction and the interdependence of the food, energy and water systems. These interdependencies exist in all parts of the world yet little knowledge exists of the complexity within these interdependent systems. Using Arizona as a case study, systems-oriented frameworks are examined for their value in revealing the complexity of FEW nexus. Industrial Symbiosis, Life Cycle Assessment (LCA) and Urban Metabolism are examined. The Industrial Symbiosis presents the system as purely a technical one and looks only at technology and hard infrastructure.

The LCA framework takes a reductionist approach and tries to make the system manageable by setting boundary conditions. This allows the frameworks to analyze the soft infrastructure as well as the hard infrastructure. The LCA framework also helps determine potential impact. Urban Metabolism analyzes the interactions between the different infrastructures within the confines of the region and retains the complexity of the system. It is concluded that a combination of the frameworks may provide the most insight in revealing the complexity of nexus and guiding decision makers towards improving sustainability and resilience.

Description

In the economic crisis Detroit has been enduring for many decades, a unique crisis has emerged with the provision of water that is normally not seen in the developed world. The oversized, deteriorating, and underfunded water provision system has been steadily accruing debt for the water utility since population began

In the economic crisis Detroit has been enduring for many decades, a unique crisis has emerged with the provision of water that is normally not seen in the developed world. The oversized, deteriorating, and underfunded water provision system has been steadily accruing debt for the water utility since population began to decrease in the 1950s. As a result, the utility has instated rate increases and aggressive water shut off policies for non-paying residents. Residents have consequentially claimed that their human right to water has been breeched.

In this report, I analyze possible solutions to the water crisis from both the water utility and resident perspectives. Since all utility management solutions have very serious limitations on either side of the argument, I have chosen a set of technologies to consider as a part of an impact mitigation plan that can provide alternative sources of water for the people who no longer can rely on municipal water. I additionally propose an adaptive management plan to evaluate the effects of using these technologies in the long-term. The monitoring of the effects of technological mitigations might also help determine if sustainability (efficiency and equity) could be an attainable long-term solution to Detroit’s water crisis.