Matching Items (2)
Filtering by

Clear all filters

Description

This study aims to quantify the environmental impacts of a hospital’s daily BMW disposal in the Phoenix, Arizona area. The sole option to dispose of BMW in Arizona is to sterilize the waste by sending it through an autoclave, and then dispose the sterilized waste in a landfill. This study

This study aims to quantify the environmental impacts of a hospital’s daily BMW disposal in the Phoenix, Arizona area. The sole option to dispose of BMW in Arizona is to sterilize the waste by sending it through an autoclave, and then dispose the sterilized waste in a landfill. This study used a Phoenix area hospital to create a start point for the waste and a general estimation of how much BMW the hospital disposes of. The system boundary for the LCA includes BMW generated at the Phoenix-area Hospital as it is travels to Stericycle, where it is autoclaved, and then transported to a landfill for disposal. The results of this retrospective, end-of-life LCA using this boundary enables hospital employees and policy makers to understand the environmental impact of placing items in the biohazardous waste bin.

Created2014-06-13
Description

This LCA used data from a previous LCA done by Chester and Horvath (2012) on the proposed California High Speed Rail, and furthered the LCA to look into potential changes that can be made to the proposed CAHSR to be more resilient to climate change. This LCA focused on the

This LCA used data from a previous LCA done by Chester and Horvath (2012) on the proposed California High Speed Rail, and furthered the LCA to look into potential changes that can be made to the proposed CAHSR to be more resilient to climate change. This LCA focused on the energy, cost, and GHG emissions associated with raising the track, adding fly ash to the concrete mixture in place of a percentage of cement, and running the HSR on solar electricity rather than the current electricity mix. Data was collected from a variety of sources including other LCAs, research studies, feasibility studies, and project information from companies, agencies, and researchers in order to determine what the cost, energy requirements, and associated GHG emissions would be for each of these changes. This data was then used to calculate results of cost, energy, and GHG emissions for the three different changes. The results show that the greatest source of cost is the raised track (Design/Construction Phase), and the greatest source of GHG emissions is the concrete (also Design/Construction Phase).

Created2014-06-13