Matching Items (6)
Filtering by

Clear all filters

152920-Thumbnail Image.png
Description
Categories are often defined by rules regarding their features. These rules may be intensely complex yet, despite the complexity of these rules, we are often able to learn them with sufficient practice. A possible explanation for how we arrive at consistent category judgments despite these difficulties would be that we

Categories are often defined by rules regarding their features. These rules may be intensely complex yet, despite the complexity of these rules, we are often able to learn them with sufficient practice. A possible explanation for how we arrive at consistent category judgments despite these difficulties would be that we may define these complex categories such as chairs, tables, or stairs by understanding the simpler rules defined by potential interactions with these objects. This concept, called grounding, allows for the learning and transfer of complex categorization rules if said rules are capable of being expressed in a more simple fashion by virtue of meaningful physical interactions. The present experiment tested this hypothesis by having participants engage in either a Rule Based (RB) or Information Integration (II) categorization task with instructions to engage with the stimuli in either a non-interactive or interactive fashion. If participants were capable of grounding the categories, which were defined in the II task with a complex visual rule, to a simpler interactive rule, then participants with interactive instructions should outperform participants with non-interactive instructions. Results indicated that physical interaction with stimuli had a marginally beneficial effect on category learning, but this effect seemed most prevalent in participants were engaged in an II task.
ContributorsCrawford, Thomas (Author) / Homa, Donald (Thesis advisor) / Glenberg, Arthur (Committee member) / McBeath, Michael (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2014
152844-Thumbnail Image.png
Description
For this master's thesis, a unique set of cognitive prompts, designed to be delivered through a teachable robotic agent, were developed for students using Tangible Activities for Geometry (TAG), a tangible learning environment developed at Arizona State University. The purpose of these prompts is to enhance the affordances of the

For this master's thesis, a unique set of cognitive prompts, designed to be delivered through a teachable robotic agent, were developed for students using Tangible Activities for Geometry (TAG), a tangible learning environment developed at Arizona State University. The purpose of these prompts is to enhance the affordances of the tangible learning environment and help researchers to better understand how we can design tangible learning environments to best support student learning. Specifically, the prompts explicitly encourage users to make use of their physical environment by asking students to perform a number of gestures and behaviors while prompting students about domain-specific knowledge. To test the effectiveness of these prompts that combine elements of cognition and physical movements, the performance and behavior of students who encounter these prompts while using TAG will be compared against the performance and behavior of students who encounter a more traditional set of cognitive prompts that would typically be used within a virtual learning environment. Following this study, data was analyzed using a novel modeling and analysis tool that combines enhanced log annotation using video and user model generation functionalities to highlight trends amongst students.
ContributorsThomas, Elissa (Author) / Burleson, Winslow (Thesis advisor) / Muldner, Katarzyna (Committee member) / Walker, Erin (Committee member) / Glenberg, Arthur (Committee member) / Arizona State University (Publisher)
Created2014
150044-Thumbnail Image.png
Description
The purpose of this study was to investigate the effect of partial exemplar experience on category formation and use. Participants had either complete or limited access to the three dimensions that defined categories by dimensions within different modalities. The concept of "crucial dimension" was introduced and the role it plays

The purpose of this study was to investigate the effect of partial exemplar experience on category formation and use. Participants had either complete or limited access to the three dimensions that defined categories by dimensions within different modalities. The concept of "crucial dimension" was introduced and the role it plays in category definition was explained. It was hypothesized that the effects of partial experience are not explained by a shifting of attention between dimensions (Taylor & Ross, 2009) but rather by an increased reliance on prototypical values used to fill in missing information during incomplete experiences. Results indicated that participants (1) do not fill in missing information with prototypical values, (2) integrate information less efficiently between different modalities than within a single modality, and (3) have difficulty learning only when partial experience prevents access to diagnostic information.
ContributorsCrawford, Thomas (Author) / Homa, Donald (Thesis advisor) / Mcbeath, Micheal (Committee member) / Glenberg, Arthur (Committee member) / Arizona State University (Publisher)
Created2011
137004-Thumbnail Image.png
Description
Brain-computer interface technology establishes communication between the brain and a computer, allowing users to control devices, machines, or virtual objects using their thoughts. This study investigates optimal conditions to facilitate learning to operate this interface. It compares two biofeedback methods, which dictate the relationship between brain activity and the movement

Brain-computer interface technology establishes communication between the brain and a computer, allowing users to control devices, machines, or virtual objects using their thoughts. This study investigates optimal conditions to facilitate learning to operate this interface. It compares two biofeedback methods, which dictate the relationship between brain activity and the movement of a virtual ball in a target-hitting task. Preliminary results indicate that a method in which the position of the virtual object directly relates to the amplitude of brain signals is most conducive to success. In addition, this research explores learning in the context of neural signals during training with a BCI task. Specifically, it investigates whether subjects can adapt to parameters of the interface without guidance. This experiment prompts subjects to modulate brain signals spectrally, spatially, and temporally, as well differentially to discriminate between two different targets. However, subjects are not given knowledge regarding these desired changes, nor are they given instruction on how to move the virtual ball. Preliminary analysis of signal trends suggests that some successful participants are able to adapt brain wave activity in certain pre-specified locations and frequency bands over time in order to achieve control. Future studies will further explore these phenomena, and future BCI projects will be advised by these methods, which will give insight into the creation of more intuitive and reliable BCI technology.
ContributorsLancaster, Jenessa Mae (Co-author) / Appavu, Brian (Co-author) / Wahnoun, Remy (Co-author, Committee member) / Helms Tillery, Stephen (Thesis director) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / Department of Psychology (Contributor)
Created2014-05
135025-Thumbnail Image.png
Description
Estradiol (E2) and Levonorgestrel (Levo) are two hormones commonly used in hormone therapy (HT) to decrease symptoms associated with menopause. Both of these hormones have been shown to have beneficial effects on cognition when given alone in a rodent model of menopause. However, it is unknown whether these hormones, when

Estradiol (E2) and Levonorgestrel (Levo) are two hormones commonly used in hormone therapy (HT) to decrease symptoms associated with menopause. Both of these hormones have been shown to have beneficial effects on cognition when given alone in a rodent model of menopause. However, it is unknown whether these hormones, when taken in combination, are beneficial or harmful to cognition. This is a critically important question given that these hormones are most often given in combination versus separately. This thesis is composed of two studies examining the cognitive effects of E2 and Levo using a rat model of surgical menopause. Study 1 assessed how the dose of E2 treatment in rats impacted cognitive performance, and found that low dose E2 enhanced working memory performance. Next, based on the results from Study 1, Study 2 used low dose E2 in combination with different doses of Levo to examine the cognitive effects of several E2 to Levo ratio combinations. The results from Study 2 demonstrated that the combination of low dose E2 with a high dose of Levo at a 1:2 ratio impaired cognition, and that the ratio currently used in HT, 3:1, may also negatively impact cognition. Indeed, there was a dose response effect indicating that working and reference memory performance was incrementally impaired as Levo dose increased. The findings in this thesis suggest that the E2 plus Levo combination is likely not neutral for cognitive function, and prompts further evaluation in menopausal women, as well as drug discovery research to optimize HT using highly controlled preclinical models.
ContributorsBerns-Leone, Claire Elizabeth (Co-author) / Prakapenka, Alesia (Co-author) / Pena, Veronica (Co-author) / Northup-Smith, Steven (Co-author) / Melikian, Ryan (Co-author) / Ladwig, Ducileia (Co-author) / Patel, Shruti (Co-author) / Croft, Corissa (Co-author) / Bimonte-Nelson, Heather (Thesis director) / Glenberg, Arthur (Committee member) / Conrad, Cheryl (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
155225-Thumbnail Image.png
Description
Many English Language Learner (ELL) children struggle with knowledge of vocabulary and syntax. Enhanced Moved by Reading to Accelerate Comprehension in English (EMBRACE) is an interactive storybook application that teaches children to read by moving pictures on the screen to act out the sentences in the text. However, EMBRACE presents

Many English Language Learner (ELL) children struggle with knowledge of vocabulary and syntax. Enhanced Moved by Reading to Accelerate Comprehension in English (EMBRACE) is an interactive storybook application that teaches children to read by moving pictures on the screen to act out the sentences in the text. However, EMBRACE presents the same level of text to all users, and it is limited in its ability to provide error feedback, as it can only determine whether a user action is right or wrong. EMBRACE could help readers learn more effectively if it personalized its instruction with texts that fit their current reading level and feedback that addresses ways to correct their mistakes. Improvements were made to the system by applying design principles of intelligent tutoring systems (ITSs). The new system added features to track the student’s reading comprehension skills, including vocabulary, syntax, and usability, based on various user actions, as well as features to adapt text complexity and provide more specific error feedback using the skills. A pilot study was conducted with 7 non-ELL students to evaluate the functionality and effectiveness of these features. The results revealed both strengths and weaknesses of the ITS. While skill updates appeared most accurate when users made particular kinds of vocabulary and syntax errors, it was not able to correctly identify other kinds of syntax errors or provide feedback when skill values became too high. Additionally, vocabulary error feedback and adapting the complexity of syntax were helpful, but syntax error feedback and adapting the complexity of vocabulary were not as helpful. Overall, children enjoy using EMBRACE, and building an intelligent tutoring system into the application presents a promising approach to make reading a both fun and effective experience.
ContributorsWong, Audrey (Author) / Walker, Erin (Thesis advisor) / Nelson, Brian (Committee member) / Glenberg, Arthur (Committee member) / Arizona State University (Publisher)
Created2017