Matching Items (1,165)
Filtering by

Clear all filters

158863-Thumbnail Image.png
Description
The maximum theoretical efficiency of a terrestrial non-concentrated silicon solar cell is 29.4%, as obtained from detailed balance analysis. Over 90% of the current silicon photovoltaics market is based on solar cells with diffused junctions (Al-BSF, PERC, PERL, etc.), which are limited in performance by increased non-radiative recombination in the

The maximum theoretical efficiency of a terrestrial non-concentrated silicon solar cell is 29.4%, as obtained from detailed balance analysis. Over 90% of the current silicon photovoltaics market is based on solar cells with diffused junctions (Al-BSF, PERC, PERL, etc.), which are limited in performance by increased non-radiative recombination in the doped regions. This limitation can be overcome through the use of passivating contacts, which prevent recombination at the absorber interfaces while providing the selectivity to efficiently separate the charge carriers generated in the absorber. This thesis aims at developing an understanding of how the material properties of the contact affect device performance through simulations.The partial specific contact resistance framework developed by Onno et al. aims to link material behavior to device performance specifically at open circuit. In this thesis, the framework is expanded to other operating points of a device, leading to a model for calculating the partial contact resistances at any current flow. The error in calculating these resistances is irrelevant to device performance resulting in an error in calculating fill factor from resistances below 0.1% when the fill factors of the cell are above 70%, i.e., for cells with good passivation and selectivity.
Further, silicon heterojunction (SHJ) and tunnel-oxide based solar cells are simulated in 1D finite-difference modeling package AFORS-HET. The effects of material property changes on device performance are investigated using novel contact materials like Al0.8Ga0.2As (hole contact for SHJ) and ITO (electron contact for tunnel-oxide cells). While changing the bandgap and electron affinity of the contact affect the height of the Schottky barrier and hence contact resistivity, increasing the doping of the contact will increase its selectivity. In the case of ITO, the contact needs to have a work function below 4.2 eV to be electron selective, which suggests that other low work function TCOs (like AZO) will be more applicable as alternative dopant-free electron contacts. The AFORS-HET model also shows that buried doped regions arising from boron diffusion in the absorber can damage passivation and decrease the open circuit voltage of the device.
ContributorsDasgupta, Sagnik (Author) / Holman, Zachary (Thesis advisor) / Onno, Arthur (Committee member) / Wang, Qing Hua (Committee member) / Arizona State University (Publisher)
Created2020
158890-Thumbnail Image.png
Description
Open Design is a crowd-driven global ecosystem which tries to challenge and alter contemporary modes of capitalistic hardware production. It strives to build on the collective skills, expertise and efforts of people regardless of their educational, social or political backgrounds to develop and disseminate physical products, machines and systems. In

Open Design is a crowd-driven global ecosystem which tries to challenge and alter contemporary modes of capitalistic hardware production. It strives to build on the collective skills, expertise and efforts of people regardless of their educational, social or political backgrounds to develop and disseminate physical products, machines and systems. In contrast to capitalistic hardware production, Open Design practitioners publicly share design files, blueprints and knowhow through various channels including internet platforms and in-person workshops. These designs are typically replicated, modified, improved and reshared by individuals and groups who are broadly referred to as ‘makers’.

This dissertation aims to expand the current scope of Open Design within human-computer interaction (HCI) research through a long-term exploration of Open Design’s socio-technical processes. I examine Open Design from three perspectives: the functional—materials, tools, and platforms that enable crowd-driven open hardware production, the critical—materially-oriented engagements within open design as a site for sociotechnical discourse, and the speculative—crowd-driven critical envisioning of future hardware.

More specifically, this dissertation first explores the growing global scene of Open Design through a long-term ethnographic study of the open science hardware (OScH) movement, a genre of Open Design. This long-term study of OScH provides a focal point for HCI to deeply understand Open Design's growing global landscape. Second, it examines the application of Critical Making within Open Design through an OScH workshop with designers, engineers, artists and makers from local communities. This work foregrounds the role of HCI researchers as facilitators of collaborative critical engagements within Open Design. Third, this dissertation introduces the concept of crowd-driven Design Fiction through the development of a publicly accessible online Design Fiction platform named Dream Drones. Through a six month long development and a study with drone related practitioners, it offers several pragmatic insights into the challenges and opportunities for crowd-driven Design Fiction. Through these explorations, I highlight the broader implications and novel research pathways for HCI to shape and be shaped by the global Open Design movement.
ContributorsFernando, Kattak Kuttige Rex Piyum (Author) / Kuznetsov, Anastasia (Thesis advisor) / Turaga, Pavan (Committee member) / Middel, Ariane (Committee member) / Takamura, John (Committee member) / Arizona State University (Publisher)
Created2020
158893-Thumbnail Image.png
Description
Investigation into research literature was conducted in order to understand the impacts of traditional concrete construction and explore recent advancements in 3D printing technologies and methodologies. The research project focuses on the relationship between computer modeling, testing, and verification to reduce concrete usage in flexural elements. The project features small-scale

Investigation into research literature was conducted in order to understand the impacts of traditional concrete construction and explore recent advancements in 3D printing technologies and methodologies. The research project focuses on the relationship between computer modeling, testing, and verification to reduce concrete usage in flexural elements. The project features small-scale and large-scale printing applications modelled by finite element analysis software and printed for laboratory testing. The laboratory testing included mortar cylinder testing, digital image correlation (DIC), and four pointbending tests. Results demonstrated comparable performance between casted, printed solid, and printed optimized flexural elements. Results additionally mimicked finite element models regarding failure regions.
ContributorsBjelland, Aidan D (Author) / Neithalath, Narayanan (Thesis advisor) / Hoover, Christian (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2020
158870-Thumbnail Image.png
Description
This research focuses mainly on employing tunable materials to achieve dynamic radiative properties for spacecraft and building thermal management. A secondary objective is to investigate tunable materials for optical propulsion applications. The primary material investigated is vanadium dioxide (VO2), which is a thermochromic material with an insulator-to-metal phase transition. VO2

This research focuses mainly on employing tunable materials to achieve dynamic radiative properties for spacecraft and building thermal management. A secondary objective is to investigate tunable materials for optical propulsion applications. The primary material investigated is vanadium dioxide (VO2), which is a thermochromic material with an insulator-to-metal phase transition. VO2 typically undergoes a dramatic shift in optical properties at T = 341 K, which can be reduced through a variety of techniques to a temperature more suitable for thermal control applications. A VO2-based Fabry-Perot variable emitter is designed, fabricated, characterized, and experimentally demonstrated. The designed emitter has high emissivity when the radiating surface temperature is above 345 K and low emissivity when the temperature is less than 341 K. A uniaxial transfer matrix method and Bruggeman effective medium theory are both introduced to model the anisotropic properties of the VO2 to facilitate the design of multilayer VO2-based devices. A new furnace oxidation process is developed for fabricating high quality VO2 and the resulting thin films undergo comprehensive material and optical characterizations. The corresponding measurement platform is developed to measure the temperature-dependent transmittance and reflectance of the fabricated Fabry-Perot samples. The variable heat rejection of the fabricated samples is demonstrated via bell jar and cryothermal vacuum calorimetry measurements. Thermal modeling of a spacecraft equipped with variable emittance radiators is also conducted to elucidate the requirements and the impact for thermochromic variable emittance technology.
The potential of VO2 to be used as an optical force modulating device is also investigated for spacecraft micropropulsion. The preliminary design considers a Fabry-Perot cavity with an anti-reflection coating which switches between an absorptive “off” state (for insulating VO2) and a reflective “on” state (for metallic VO2), thereby modulating the incident solar radiation pressure. The visible and near-infrared optical properties of the fabricated vanadium dioxide are examined to determine if there is a sufficient optical property shift in those regimes for a tunable device.
ContributorsTaylor, Sydney June (Author) / Wang, Liping (Thesis advisor) / Wells, Valana (Committee member) / Yu, Hongbin (Committee member) / Wang, Robert (Committee member) / Thangavelautham, Jekanthan (Committee member) / Massina, Christopher J (Committee member) / Arizona State University (Publisher)
Created2020
158879-Thumbnail Image.png
Description
Lateral programmable metallization cells (PMC) utilize the properties of electrodeposits grown over a solid electrolyte channel. Such devices have an active anode and an inert cathode separated by a long electrodeposit channel in a coplanar arrangement. The ability to transport large amount of metallic mass across the channel makes these

Lateral programmable metallization cells (PMC) utilize the properties of electrodeposits grown over a solid electrolyte channel. Such devices have an active anode and an inert cathode separated by a long electrodeposit channel in a coplanar arrangement. The ability to transport large amount of metallic mass across the channel makes these devices attractive for various More-Than-Moore applications. Existing literature lacks a comprehensive study of electrodeposit growth kinetics in lateral PMCs. Moreover, the morphology of electrodeposit growth in larger, planar devices is also not understood. Despite the variety of applications, lateral PMCs are not embraced by the semiconductor industry due to incompatible materials and high operating voltages needed for such devices. In this work, a numerical model based on the basic processes in PMCs – cation drift and redox reactions – is proposed, and the effect of various materials parameters on the electrodeposit growth kinetics is reported. The morphology of the electrodeposit growth and kinetics of the electrodeposition process are also studied in devices based on Ag-Ge30Se70 materials system. It was observed that the electrodeposition process mainly consists of two regimes of growth – cation drift limited regime and mixed regime. The electrodeposition starts in cation drift limited regime at low electric fields and transitions into mixed regime as the field increases. The onset of mixed regime can be controlled by applied voltage which also affects the morphology of electrodeposit growth. The numerical model was then used to successfully predict the device kinetics and onset of mixed regime. The problem of materials incompatibility with semiconductor manufacturing was solved by proposing a novel device structure. A bilayer structure using semiconductor foundry friendly materials was suggested as a candidate for solid electrolyte. The bilayer structure consists of a low resistivity oxide shunt layer on top of a high resistivity ion carrying oxide layer. Devices using Cu2O as the low resistivity shunt on top of Cu doped WO3 oxide were fabricated. The bilayer devices provided orders of magnitude improvement in device performance in the context of operating voltage and switching time. Electrical and materials characterization revealed the structure of bilayers and the mechanism of electrodeposition in these devices.
ContributorsChamele, Ninad (Author) / Kozicki, Michael (Thesis advisor) / Barnaby, Hugh (Committee member) / Newman, Nathan (Committee member) / Gonzalez-Velo, Yago (Committee member) / Arizona State University (Publisher)
Created2020
158772-Thumbnail Image.png
Description
The passivity of metals is a phenomenon of vast importance as it prevents many materials in important applications from rapid deterioration by corrosion. Alloying with a sufficient quantity of passivating elements (Cr, Al, Si), typically in the range of 10% - 20%, is commonly employed to improve the corrosion resistance

The passivity of metals is a phenomenon of vast importance as it prevents many materials in important applications from rapid deterioration by corrosion. Alloying with a sufficient quantity of passivating elements (Cr, Al, Si), typically in the range of 10% - 20%, is commonly employed to improve the corrosion resistance of elemental metals. However, the compositional criteria for enhanced corrosion resistance have been a long-standing unanswered question for alloys design. With the emerging interest in multi-principal element alloy design, a percolation model is developed herein for the initial stage of passive film formation, termed primary passivation. The successful validation of the assumptions and predictions of the model in three corrosion-resistant binary alloys, Fe-Cr, Ni-Cr, and Cu-Rh supports that the model which can be used to provide a quantitative design strategy for designing corrosion-resistant alloys. To date, this is the only model that can provide such criteria for alloy design.The model relates alloy passivation to site percolation of the passivating elements in the alloy matrix. In the initial passivation stage, Fe (Ni in Ni-Cr or Cu in Cu-Rh) is selectively dissolved, destroying the passive network built up by Cr (or Rh) oxides and undercutting isolated incipient Cr (Rh) oxide nuclei. The only way to prevent undercutting and form a stable protective passive film is if the concentration of Cr (Rh) is high enough to realize site percolation within the thickness of the passive film or the dissolution depth. This 2D-3D percolation cross-over transition explains the compositional dependent passivation of these alloys. The theoretical description of the transition and its assumptions is examined via experiments and kinetic Monte Carlo simulations. The initial passivation scenario of the dissolution selectivity is validated by the inductively coupled plasma mass spectrum (ICP-MS). The electronic effect not considered in the kinetic Monte Carlo simulations is addressed by density functional theory (DFT). Additionally, the impact of the atomic configuration parameter on alloy passivation is experimentally measured, which turns out to agree well with the model predictions developed using Monte Carlo renormalization group (MC-RNG) methods.
ContributorsXie, Yusi (Author) / Sieradzki, Karl KS (Thesis advisor) / Chan, Candace CC (Committee member) / Wang, Qing QHW (Committee member) / Buttry, Daniel DB (Committee member) / Arizona State University (Publisher)
Created2020
Description
Analytics are being collected on a day to day basis on just about anything that you can think of. Sports is one of the recent fields that has started implementing the tool into their game. Analytics can be described as an abundance of statistical information that show situational

Analytics are being collected on a day to day basis on just about anything that you can think of. Sports is one of the recent fields that has started implementing the tool into their game. Analytics can be described as an abundance of statistical information that show situational tendencies of other teams and players. It is hypothesized that analytics provide anticipatory information that allows athletes to know what is coming; therefore, allowing them to perform better in real game scenarios. However, it is unclear how this information should be presented to athletes and whether athletes can actually retain the abundance of information given to them. Two different types of presentation methods (Numeric and Numeric plus Graph) and two different amounts of analytic information (High and Low) were compared for baseball players in an online based baseball specific retention survey: High Numeric (excess information shown in spreadsheet format), Low Numeric (key information shown in spreadsheet format), High Numeric plus Graph (excess information shown as a spreadsheet with hitting zone maps), and Low Numeric plus Graph (key information shown as a spreadsheet with hitting zone maps). Athletes produced different retention scores for the type of presentation method given across the whole study. Athletes presented analytic as Numeric plus Graph performed better than athletes in just Numeric condition. Additionally, playing experience had a significant effect on an athlete’s ability to retain analytic information. Athletes with 10 plus years of baseball experience performed better in every condition other than High Numeric plus Graph compared to athletes with less than 10 years of experience. Amount and experience also had an interaction effect that produced statistical significance; those with less experience performed better in conditions with less baseball information given whereas those with more experience were able to handle more baseball information at once. Providing analytic information gives athletes, especially baseball batters, a significant advantage over their opponent; however, ability to retain analytic information depends on how the information is presented and to whom the information is being presented.
ContributorsGin, Andrew B (Author) / Gray, Robert (Thesis advisor) / Cooke, Nancy J. (Committee member) / Craig, Scotty (Committee member) / Arizona State University (Publisher)
Created2020
158779-Thumbnail Image.png
Description
The primary goal of this thesis is to evaluate the influence of ethyl vinyl acetate (EVA) and polyolefin elastomer (POE) encapsulant types on the glass-glass (GG) photovoltaic (PV) module reliability. The influence of these two encapsulant types on the reliability of GG modules was compared with baseline glass-polymer backsheet (GB)

The primary goal of this thesis is to evaluate the influence of ethyl vinyl acetate (EVA) and polyolefin elastomer (POE) encapsulant types on the glass-glass (GG) photovoltaic (PV) module reliability. The influence of these two encapsulant types on the reliability of GG modules was compared with baseline glass-polymer backsheet (GB) modules for a benchmarking purpose. Three sets of modules, with four modules in each set, were constructed with two substrates types i.e. glass-glass (GG) and glass- polymer backsheet (GB); and 2 encapsulants types i.e. ethyl vinyl acetate (EVA) and polyolefin elastomer (POE). Each module set was subjected to the following accelerated tests as specified in the International Electrotechnical Commission (IEC) standard and Qualification Plus protocol of NREL: Ultraviolet (UV) 250 kWh/m2; Thermal Cycling (TC) 200 cycles; Damp Heat (DH) 1250 hours. To identify the failure modes and reliability issues of the stressed modules, several module-level non-destructive characterizations were carried out and they include colorimetry, UV-Vis-NIR spectral reflectance, ultraviolet fluorescence (UVF) imaging, electroluminescence (EL) imaging, and infrared (IR) imaging. The above-mentioned characterizations were performed on the front side of the modules both before the stress tests (i.e. pre-stress) and after the stress tests (i.e. post-stress). The UV-250 extended stress results indicated slight changes in the reflectance on the non-cell area of EVA modules probably due to minor adhesion loss at the cell and module edges. From the DH-1250 extended stress tests, significant changes, in both encapsulant types modules, were observed in reflectance and UVF images indicating early stages of delamination. In the case of the TC-200 stress test, practically no changes were observed in all sets of modules. From the above short-term stress tests, it appears although not conclusive at this stage of the analysis, delamination seems to be the only failure mode that could possibly be affecting the module performance, as observed from UV and DH extended stress tests. All these stress tests need to be continued to identify the wear-out failure modes and their impacts on the performance parameters of PV modules.
ContributorsBhaskaran, Rahul (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2020
158781-Thumbnail Image.png
Description
ABSTRACT
Academic literature and industry benchmarking reports were reviewed to determine the way facilities benchmarking reports were perceived in the healthcare industry. Interviews were conducted through a Delphi panel of industry professionals who met experience and other credential requirements. Two separate rounds of interviewing were conducted

ABSTRACT
Academic literature and industry benchmarking reports were reviewed to determine the way facilities benchmarking reports were perceived in the healthcare industry. Interviews were conducted through a Delphi panel of industry professionals who met experience and other credential requirements. Two separate rounds of interviewing were conducted where each candidate was asked the same questions to determine the current views of benchmarking reports and associated data in the healthcare industry. The questions asked in the second round were developed from the answers to the first-round questions. The research showed the panel preferred changes in the data collection methods as well as changes in the way the data is presented. The need for these changes was unanimous among the members of the panel. The main recommendations among the group were:
1. An interactive method such as a member portal with the ability to customize, run scenarios, and save data is the preferred method.
2. Facilities Management (FM) teams are often not included in the data collection of the benchmark reports. Including FM groups would allow more accuracy and more detailed data resulting in more accurate and in-depth reports.
3. More consistency and “apples to apples” comparisons need to be provided in the reports. More categories and variables need to be added to the reports to offer more in depth comparisons and assessments between buildings. Identifiers to help the users compare the physical condition of their facility to others needs to be included. Suggestions are as follows:
a. Facility Condition Index (FCI)- easily available to all participants and allows an idea of the comparison of upkeep and maintenance of their facility to that of others.
b. An indicator on whether the comparison buildings are Centers for Medicare and Medicaid Services (CMS) accredited.
4. Gross Square Footage (GSF) is not an accurate assessment on its own. Too many variables are left unidentified to offer an accurate assessment with this method alone.
ContributorsChalmers, Jeffrey (Author) / Sullivan, Kenneth (Thesis advisor) / Smithwick, Jake (Committee member) / Hurtado, Kristen (Committee member) / Arizona State University (Publisher)
Created2020
158432-Thumbnail Image.png
Description
The origins of carrier mobility (μe) were thoroughly investigated in hydrogenated indium oxide (IO:H) and zinc-tin oxide (ZTO) transparent conducting oxide (TCO) thin films. A carrier transport model was developed for IO:H which studied the effects of ionized impurity scattering, polar optical phonon scattering, and grain boundary scattering. Ionized impurity

The origins of carrier mobility (μe) were thoroughly investigated in hydrogenated indium oxide (IO:H) and zinc-tin oxide (ZTO) transparent conducting oxide (TCO) thin films. A carrier transport model was developed for IO:H which studied the effects of ionized impurity scattering, polar optical phonon scattering, and grain boundary scattering. Ionized impurity scattering dominated at temperatures below ~240 K. A reduction in scattering charge Z from +2 to +1 as atomic %H increased from ~3 atomic %H to ~5 atomic %H allowed μe to attain >100 cm^2/Vs at ~5 atomic %H.

In highly hydrogenated IO:H, ne significantly decreased as temperature increased from 5 K to 140 K. To probe this unusual behavior, samples were illuminated, then ne, surface work function (WF), and spatially resolved microscopic current mapping were measured and tracked. Large increases in ne and corresponding decreases in WF were observed---these both exhibited slow reversions toward pre-illumination values over 6-12 days. A hydrogen-related defect was proposed as source of the photoexcitation, while a lattice defect diffusion mechanism causes the extended decay. Both arise from an under-coordination of the In.

An enhancement of μe was observed with increasing amorphous fraction in IO:H. An increase in population of corner- and edge-sharing polyhedra consisting of metal cations and oxygen anions is thought to be the origin. This indicates some measure of medium-range order in the amorphous structure, and gives rise to a general principle dictating μe in TCOs---even amorphous TCOs. Testing this principle resulted in observing an enhancement of μe up to 35 cm^2/Vs in amorphous ZTO (a-ZTO), one of the highest reported a-ZTO μe values (at ne > 10^19 cm^-3) to date. These results highlight the role of local distortions and cation coordination in determining the microscopic origins of carrier generation and transport. In addition, the strong likelihood of under-coordination of one cation species leading to high carrier concentrations is proposed. This diverges from the historical indictment of oxygen vacancies controlling carrier population in crystalline oxides, which by definition cannot occur in amorphous systems, and provides a framework to discuss key structural descriptors in these disordered phase materials.
ContributorsHusein, Sebastian S.T. (Author) / Bertoni, Mariana I. (Thesis advisor) / Stuckelberger, Michael (Committee member) / Holman, Zachary C. (Committee member) / Crozier, Peter (Committee member) / Arizona State University (Publisher)
Created2020