Matching Items (2)
Filtering by

Clear all filters

168693-Thumbnail Image.png
Description
Localization tasks using two-way ranging (TWR) are making headway in modern daynavigation applications as an alternative to legacy global navigation satellite systems (GNSS) such as GPS. There is not currently literature that provides a closed-form expression for estimation performance bounds on position and attitude when a TWR system is employed. A Cramer-Rao Lower

Localization tasks using two-way ranging (TWR) are making headway in modern daynavigation applications as an alternative to legacy global navigation satellite systems (GNSS) such as GPS. There is not currently literature that provides a closed-form expression for estimation performance bounds on position and attitude when a TWR system is employed. A Cramer-Rao Lower Bounds (CRLB) is derived for position and orientation estimation using both 2-D and 3-D geometries. A literature review is performed to give background and detail on the tools needed for a thorough analysis of this problem. Popular Least Squares techniques and solutions to Wahba’s problem are compared to the derived bounds as proof of correctness using Monte Carlo simulations. A brief exploration on estimation performance using an Extended Kalman Filter for non-stationary users is also looked at as an introduction to future extensions to this work. The literature Applications like the CHP2 system are discussed as well to show how secure, inexpensive and robust implementation of TWR is highly feasible. i
ContributorsWelker, Samuel (Author) / Bliss, Daniel (Thesis advisor) / Herschfelt, Andrew (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2022
158413-Thumbnail Image.png
Description
Within the near future, a vast demand for autonomous vehicular techniques can be forecast on both aviation and ground platforms, including autonomous driving, automatic landing, air traffic management. These techniques usually rely on the positioning system and the communication system independently, where it potentially causes spectrum congestion. Inspired by the

Within the near future, a vast demand for autonomous vehicular techniques can be forecast on both aviation and ground platforms, including autonomous driving, automatic landing, air traffic management. These techniques usually rely on the positioning system and the communication system independently, where it potentially causes spectrum congestion. Inspired by the spectrum sharing technique, Communications and High-Precision Positioning (CHP2) system is invented to provide a high precision position service (precision ~1cm) while performing the communication task simultaneously under the same spectrum. CHP2 system is implemented on the consumer-off-the-shelf (COTS) software-defined radio (SDR) platform with customized hardware. Taking the advantages of the SDR platform, the completed baseband processing chain, time-of-arrival estimation (ToA), time-of-flight estimation (ToF) are mathematically modeled and then implemented onto the system-on-chip (SoC) system. Due to the compact size and cost economy, the CHP2 system can be installed on different aerial or ground platforms enabling a high-mobile and reconfigurable network.

In this dissertation report, the implementation procedure of the CHP2 system is discussed in detail. It mainly focuses on the system construction on the Xilinx Ultrascale+ SoC platform. The CHP2 waveform design, ToA solution, and timing exchanging algorithms are also introduced. Finally, several in-lab tests and over-the-air demonstrations are conducted. The demonstration shows the best ranging performance achieves the ~1 cm standard deviation and 10Hz refreshing rate of estimation by using a 10MHz narrow-band signal over 915MHz (US ISM) or 783MHz (EU Licensed) carrier frequency.
ContributorsYu, Hanguang (Author) / Bliss, Daniel (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Alkhateeb, Ahmed (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2020