Matching Items (2)
Filtering by

Clear all filters

157365-Thumbnail Image.png
Description
UVLabel was created to enable radio astronomers to view and annotate their own data such that they could then expand their future research paths. It simplifies their data rendering process by providing a simple user interface to better access sections of their data. Furthermore, it provides an interface to track

UVLabel was created to enable radio astronomers to view and annotate their own data such that they could then expand their future research paths. It simplifies their data rendering process by providing a simple user interface to better access sections of their data. Furthermore, it provides an interface to track trends in their data through a labelling feature.

The tool was developed following the incremental development process in order to quickly create a functional and testable tool. The incremental process also allowed for feedback from radio astronomers to help guide the project's development.

UVLabel provides both a functional product, and a modifiable and scalable code base for radio astronomer developers. This enables astronomers studying various astronomical interferometric data labelling capabilities. The tool can then be used to improve their filtering methods, pursue machine learning solutions, and discover new trends. Finally, UVLabel will be open source to put customization, scalability, and adaptability in the hands of these researchers.
ContributorsLa Place, Cecilia (Author) / Bansal, Ajay (Thesis advisor) / Jacobs, Daniel (Thesis advisor) / Acuna, Ruben (Committee member) / Arizona State University (Publisher)
Created2019
157904-Thumbnail Image.png
Description
TolTEC is a three-color millimeter wavelength camera currently being developed for the Large Millimeter Telescope (LMT) in Mexico. Synthesizing data from previous astronomy cameras as well as knowledge of atmospheric physics, I have developed a simulation of the data collection of TolTEC on the LMT. The simulation was built off

TolTEC is a three-color millimeter wavelength camera currently being developed for the Large Millimeter Telescope (LMT) in Mexico. Synthesizing data from previous astronomy cameras as well as knowledge of atmospheric physics, I have developed a simulation of the data collection of TolTEC on the LMT. The simulation was built off smaller sub-projects that informed the development with an understanding of the detector array, the time streams for astronomical mapping, and the science behind Lumped Element Kinetic Inductance Detectors (LEKIDs). Additionally, key aspects of software development processes were integrated into the scientific development process to streamline collaboration across multiple universities and plan for integration on the servers at LMT. The work I have done benefits the data reduction pipeline team by enabling them to efficiently develop their software and test it on simulated data.
ContributorsHorton, Paul (Author) / Mauskopf, Philip (Thesis advisor) / Bansal, Ajay (Thesis advisor) / Sandy, Douglas (Committee member) / Arizona State University (Publisher)
Created2019