Matching Items (3)
Filtering by

Clear all filters

157362-Thumbnail Image.png
Description
Vagus nerve stimulation (VNS) has shown benefits beyond its original therapeutic application, though there is a lack of research into these benefits in healthy and athletic populations. To address this gap in the VNS literature, the present study addresses the feasibility and possible efficacy of transcutaneous VNS (tVNS) in improving

Vagus nerve stimulation (VNS) has shown benefits beyond its original therapeutic application, though there is a lack of research into these benefits in healthy and athletic populations. To address this gap in the VNS literature, the present study addresses the feasibility and possible efficacy of transcutaneous VNS (tVNS) in improving performance and various biometrics during two athletic tasks: golf tee shots and baseball pitching. Performance, cortical dynamics, anxiety measures, muscle excitation, and heart rate characteristics were assessed before and after stimulation using electroencephalography (EEG), the State-Trait Anxiety Inventory (STAI), and electrocardiography (ECG) during the baseball and golf tasks as well as electromyography (EMG) for muscle excitation in the golf participants. Golfers exhibited increased perceived quality of each repetition (independent from outcome) and an improvement in state and trait anxiety after stimulation. Golfers in the active stimulation group also showed a greater reduction in right upper trapezius muscle excitation when compared to the sham stimulation group. Baseball pitchers exhibited an increase in perceived quality of each repetition (independent from outcome) after active stimulation but not an improvement of state and trait anxiety. No significant effects of stimulation Priming, stimulation Type, or the Priming×Type interaction were seen in heart rate, EEG, or performance in the golf or baseball tasks. The present study supports the feasibility of tVNS in sports and athletic tasks and suggests the need for future research to investigate further into the effects of tVNS on the performance, psychologic, and physiologic attributes of athletes during competition.
ContributorsLindley, Kyle (Author) / Tyler, William J (Thesis advisor) / Wyckoff, Sarah (Committee member) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2019
168731-Thumbnail Image.png
Description
Water is an essential nutrient that is often overlooked. As a result of this hydration status is often forgotten as well. Becoming hypohydrated puts athletes at risk of decreased performance and potentially life-threatening heat illness. Being able to self-assess hydration status is may be instrumental in helping athletes safely optimize

Water is an essential nutrient that is often overlooked. As a result of this hydration status is often forgotten as well. Becoming hypohydrated puts athletes at risk of decreased performance and potentially life-threatening heat illness. Being able to self-assess hydration status is may be instrumental in helping athletes safely optimize performance. Therefore, this study investigated, 1) the ability of an athletic population vs. trained investigators to self-diagnose underhydration, 2) the diagnostic ability of urine color (Ucol) charts as a method for diagnosing underhydration, and 3) the accuracy of participant and investigator assessments. Members of an athletic population each provided a urine sample and scored samples using both the traditional 8-color and newly developed 7-color Ucol chart. Investigators then scored the samples using the same methods. To determine the diagnostic value of the Ucol charts, Ucol scores were compared to concentration measures of Urine Specific Gravity (USG) and Urine Osmolality (Uosm). Differences in participant and investigator scores were compared using Mann-Whitney U and Spearman’s Correlation. Bland-Altman plots were drawn to assess individual differences in reporting against the mean of the two methods. Receiver Operating Characteristic (ROC) analysis was used to both determine the ability of both charts to diagnose underhydration and to determine how well participants and investigators can determine their level of hydration. Athletes reported Ucol significantly lighter compared to investigators. Investigators showed no difference in reporting between the two charts but, athletes reported less than a color shade difference. The charts performed fair (8-color) to good (7-color) at diagnosing hypohydration. Athletes reported with less accuracy compared to investigators, and Ucol classification was found to be more accurate when compared to USG. Ucol charts are a practical tool to determine hydration status. Ucol scoring is similar regardless of the type of chart used. Trained investigators reported with slightly higher accuracy on both charts compared to untrained athletes. Athletes score Ucol fair to good in comparison to investigators. Ucol scoring is similar regardless of the type of chart used. The diagnostic ability of both Ucol charts is good in relation to USG. With education, athletes may be able to improve scores.
ContributorsPesek, Kathryn Margaret (Author) / Wardenaar, Floris (Thesis advisor) / Johnston, Carol (Committee member) / Yudell, Amber (Committee member) / Arizona State University (Publisher)
Created2022
158207-Thumbnail Image.png
Description
Electrical nerve stimulation is a promising drug-free technology that could treat a variety of ailments and disorders. Methods like Vagus Nerve Stimulation have been used for decades to treat disorders like epilepsy, and research with non-invasive vagus nerve stimulation has shown similar effects as its invasive counterpart. Non-invasive nerve stimulation

Electrical nerve stimulation is a promising drug-free technology that could treat a variety of ailments and disorders. Methods like Vagus Nerve Stimulation have been used for decades to treat disorders like epilepsy, and research with non-invasive vagus nerve stimulation has shown similar effects as its invasive counterpart. Non-invasive nerve stimulation methods like vagus nerve stimulation could help millions of people treat and manage various disorders.

This study observed the effects of three different non-invasive nerve stimulation paradigms in human participants. The first study analyzed the safety and efficacy of transcutaneous auricular vagal nerve stimulation in healthy humans using a bilateral stimulation protocol with uniquely designed dry-hydrogel electrodes. Results demonstrate bilateral auricular vagal nerve stimulation has significant effects on specific parameters of autonomic activity and is safe and well tolerated. The second study analyzed the effects of non-invasive electrical stimulation of a region on the side of the neck that contains the Great Auricular Nerve and the Auricular Branch of the Vagus Nerve called the tympanomastoid fissure on golf hitting performance in healthy golfers. Results did not show significant effects on hitting performance or physiological activity, but the nerve stimulation had significant effects on reducing state-anxiety and improving the quality of feel of each shot. The third study analyzed the effects of non-invasive nerve stimulation of cervical nerves on the back of the neck on putting performance of yips-affected golfers. Results demonstrated that cervical nerve stimulation had significant effects on improving putting performance but did not have significant effects on physiological activity. Data from these studies show there are potential applications for non-invasive electrical nerve stimulation for healthy and athletic populations. Future research should also examine the effects of these stimulation methods in clinical populations.
ContributorsHool, Nicholas (Author) / Tyler, William J (Thesis advisor) / Crews, Debbie (Committee member) / Muthuswamy, Jitendran (Committee member) / Helms Tillery, Stephen (Committee member) / Sebold, Brent (Committee member) / Arizona State University (Publisher)
Created2020