Matching Items (2)
157313-Thumbnail Image.png
Description
Allocating tasks for a day's or week's schedule is known to be a challenging and difficult problem. The problem intensifies by many folds in multi-agent settings. A planner or group of planners who decide such kind of task association schedule must have a comprehensive perspective on (1) the entire array

Allocating tasks for a day's or week's schedule is known to be a challenging and difficult problem. The problem intensifies by many folds in multi-agent settings. A planner or group of planners who decide such kind of task association schedule must have a comprehensive perspective on (1) the entire array of tasks to be scheduled (2) idea on constraints like importance cum order of tasks and (3) the individual abilities of the operators. One example of such kind of scheduling is the crew scheduling done for astronauts who will spend time at International Space Station (ISS). The schedule for the crew of ISS is decided before the mission starts. Human planners take part in the decision-making process to determine the timing of activities for multiple days for multiple crew members at ISS. Given the unpredictability of individual assignments and limitations identified with the various operators, deciding upon a satisfactory timetable is a challenging task. The objective of the current work is to develop an automated decision assistant that would assist human planners in coming up with an acceptable task schedule for the crew. At the same time, the decision assistant will also ensure that human planners are always in the driver's seat throughout this process of decision-making.

The decision assistant will make use of automated planning technology to assist human planners. The guidelines of Naturalistic Decision Making (NDM) and the Human-In-The -Loop decision making were followed to make sure that the human is always in the driver's seat. The use cases considered are standard situations which come up during decision-making in crew-scheduling. The effectiveness of automated decision assistance was evaluated by setting it up for domain experts on a comparable domain of scheduling courses for master students. The results of the user study evaluating the effectiveness of automated decision support were subsequently published.
ContributorsMIshra, Aditya Prasad (Author) / Kambhampati, Subbarao (Thesis advisor) / Chiou, Erin (Committee member) / Demakethepalli Venkateswara, Hemanth Kumar (Committee member) / Arizona State University (Publisher)
Created2019
158010-Thumbnail Image.png
Description
Robotic lower limb prostheses provide new opportunities to help transfemoral amputees regain mobility. However, their application is impeded by that the impedance control parameters need to be tuned and optimized manually by prosthetists for each individual user in different task environments. Reinforcement learning (RL) is capable of automatically learning from

Robotic lower limb prostheses provide new opportunities to help transfemoral amputees regain mobility. However, their application is impeded by that the impedance control parameters need to be tuned and optimized manually by prosthetists for each individual user in different task environments. Reinforcement learning (RL) is capable of automatically learning from interacting with the environment. It becomes a natural candidate to replace human prosthetists to customize the control parameters. However, neither traditional RL approaches nor the popular deep RL approaches are readily suitable for learning with limited number of samples and samples with large variations. This dissertation aims to explore new RL based adaptive solutions that are data-efficient for controlling robotic prostheses.

This dissertation begins by proposing a new flexible policy iteration (FPI) framework. To improve sample efficiency, FPI can utilize either on-policy or off-policy learning strategy, can learn from either online or offline data, and can even adopt exiting knowledge of an external critic. Approximate convergence to Bellman optimal solutions are guaranteed under mild conditions. Simulation studies validated that FPI was data efficient compared to several established RL methods. Furthermore, a simplified version of FPI was implemented to learn from offline data, and then the learned policy was successfully tested for tuning the control parameters online on a human subject.

Next, the dissertation discusses RL control with information transfer (RL-IT), or knowledge-guided RL (KG-RL), which is motivated to benefit from transferring knowledge acquired from one subject to another. To explore its feasibility, knowledge was extracted from data measurements of able-bodied (AB) subjects, and transferred to guide Q-learning control for an amputee in OpenSim simulations. This result again demonstrated that data and time efficiency were improved using previous knowledge.

While the present study is new and promising, there are still many open questions to be addressed in future research. To account for human adaption, the learning control objective function may be designed to incorporate human-prosthesis performance feedback such as symmetry, user comfort level and satisfaction, and user energy consumption. To make the RL based control parameter tuning practical in real life, it should be further developed and tested in different use environments, such as from level ground walking to stair ascending or descending, and from walking to running.
ContributorsGao, Xiang (Author) / Si, Jennie (Thesis advisor) / Huang, He Helen (Committee member) / Santello, Marco (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2020