Matching Items (2)
Filtering by

Clear all filters

157202-Thumbnail Image.png
Description
In this thesis, a new approach to learning-based planning is presented where critical regions of an environment with low probability measure are learned from a given set of motion plans. Critical regions are learned using convolutional neural networks (CNN) to improve sampling processes for motion planning (MP).

In addition to an

In this thesis, a new approach to learning-based planning is presented where critical regions of an environment with low probability measure are learned from a given set of motion plans. Critical regions are learned using convolutional neural networks (CNN) to improve sampling processes for motion planning (MP).

In addition to an identification network, a new sampling-based motion planner, Learn and Link, is introduced. This planner leverages critical regions to overcome the limitations of uniform sampling while still maintaining guarantees of correctness inherent to sampling-based algorithms. Learn and Link is evaluated against planners from the Open Motion Planning Library (OMPL) on an extensive suite of challenging navigation planning problems. This work shows that critical areas of an environment are learnable, and can be used by Learn and Link to solve MP problems with far less planning time than existing sampling-based planners.
ContributorsMolina, Daniel, M.S (Author) / Srivastava, Siddharth (Thesis advisor) / Li, Baoxin (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2019
158597-Thumbnail Image.png
Description
Robot motion planning requires computing a sequence of waypoints from an initial configuration of the robot to the goal configuration. Solving a motion planning problem optimally is proven to be NP-Complete. Sampling-based motion planners efficiently compute an approximation of the optimal solution. They sample the configuration space uniformly and hence

Robot motion planning requires computing a sequence of waypoints from an initial configuration of the robot to the goal configuration. Solving a motion planning problem optimally is proven to be NP-Complete. Sampling-based motion planners efficiently compute an approximation of the optimal solution. They sample the configuration space uniformly and hence fail to sample regions of the environment that have narrow passages or pinch points. These critical regions are analogous to landmarks from planning literature as the robot is required to pass through them to reach the goal.

This work proposes a deep learning approach that identifies critical regions in the environment and learns a sampling distribution to effectively sample them in high dimensional configuration spaces.

A classification-based approach is used to learn the distributions. The robot degrees of freedom (DOF) limits are binned and a distribution is generated from sampling motion plan solutions. Conditional information like goal configuration and robot location encoded in the network inputs showcase the network learning to bias the identified critical regions towards the goal configuration. Empirical evaluations are performed against the state of the art sampling-based motion planners on a variety of tasks requiring the robot to pass through critical regions. An empirical analysis of robotic systems with three to eight degrees of freedom indicates that this approach effectively improves planning performance.
ContributorsSrinet, Abhyudaya (Author) / Srivastava, Siddharth (Thesis advisor) / Zhang, Yu (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2020