Matching Items (2)
Filtering by

Clear all filters

157154-Thumbnail Image.png
Description
Over the years, the growing penetration of renewable energy into the electricity market has resulted in a significant change in the electricity market price. This change makes the existing forecasting method prone to error, decreasing the economic benefits. Hence, more precise forecasting methods need to be developed. This paper starts

Over the years, the growing penetration of renewable energy into the electricity market has resulted in a significant change in the electricity market price. This change makes the existing forecasting method prone to error, decreasing the economic benefits. Hence, more precise forecasting methods need to be developed. This paper starts with a survey and benchmark of existing machine learning approaches for forecasting the real-time market (RTM) price. While these methods provide sufficient modeling capability via supervised learning, their accuracy is still limited due to the single data source, e.g., historical price information only. In this paper, a novel two-stage supervised learning approach is proposed by diversifying the data sources such as highly correlated power data. This idea is inspired by the recent load forecasting methods that have shown extremely well performances. Specifically, the proposed two-stage method, namely the rerouted method, learns two types of mapping rules. The first one is the mapping between the historical wind power and the historical price. The second is the forecasting rule for wind generation. Based on the two rules, we forecast the price via the forecasted generation and the first learned mapping between power and price. Additionally, we observed that it is not the more training data the better, leading to our validation steps to quantify the best training intervals for different datasets. We conduct comparisons of numerical results between existing methods and the proposed methods based on datasets from the Electric Reliability Council of Texas (ERCOT). For each machine learning step, we examine different learning methods, such as polynomial regression, support vector regression, neural network, and deep neural network. The results show that the proposed method is significantly better than existing approaches when renewables are involved.
ContributorsLuo, Shuman (Author) / Weng, Yang (Thesis advisor) / Lei, Qin (Committee member) / Qin, Jiangchao (Committee member) / Arizona State University (Publisher)
Created2019
156936-Thumbnail Image.png
Description
In recent years, conventional convolutional neural network (CNN) has achieved outstanding performance in image and speech processing applications. Unfortunately, the pooling operation in CNN ignores important spatial information which is an important attribute in many applications. The recently proposed capsule network retains spatial information and improves the capabilities of traditional

In recent years, conventional convolutional neural network (CNN) has achieved outstanding performance in image and speech processing applications. Unfortunately, the pooling operation in CNN ignores important spatial information which is an important attribute in many applications. The recently proposed capsule network retains spatial information and improves the capabilities of traditional CNN. It uses capsules to describe features in multiple dimensions and dynamic routing to increase the statistical stability of the network.

In this work, we first use capsule network for overlapping digit recognition problem. We evaluate the performance of the network with respect to recognition accuracy, convergence and training time per epoch. We show that capsule network achieves higher accuracy when training set size is small. When training set size is larger, capsule network and conventional CNN have comparable recognition accuracy. The training time per epoch for capsule network is longer than conventional CNN because of the dynamic routing algorithm. An analysis of the GPU timing shows that adjusting the capsule structure can help decrease the time complexity of the dynamic routing algorithm significantly.

Next, we design a capsule network for speech recognition, specifically, overlapping word recognition. We use both capsule network and conventional CNN to recognize 2 overlapping words in speech files created from 5 word classes. We show that capsule network achieves a considerably higher recognition accuracy (96.92%) compared to conventional CNN (85.19%). Our results show that capsule network recognizes overlapping word by recognizing each individual word in the speech. We also verify the scalability of capsule network by increasing the number of word classes from 5 to 10. Capsule network still shows a high recognition accuracy of 95.42% in case of 10 words while the accuracy of conventional CNN decreases sharply to 73.18%.
ContributorsXiong, Yan (Author) / Chakrabarti, Chaitali (Thesis advisor) / Berisha, Visar (Thesis advisor) / Weng, Yang (Committee member) / Arizona State University (Publisher)
Created2018