Matching Items (3)
Filtering by

Clear all filters

156882-Thumbnail Image.png
Description
Dissolved organic matter (DOM) is an important part of aquatic foodwebs because it contains carbon, nitrogen, and other elements required by heterotrophic organisms. It has many sources that determine its molecular composition, nutrient content, and biological lability and in turn, influence whether it is retained and processed in the stream

Dissolved organic matter (DOM) is an important part of aquatic foodwebs because it contains carbon, nitrogen, and other elements required by heterotrophic organisms. It has many sources that determine its molecular composition, nutrient content, and biological lability and in turn, influence whether it is retained and processed in the stream reach or exported downstream. I examined the composition of DOM from vascular wetland plants, filamentous algae, and riparian tree leaf litter in Sonoran Desert streams and its decomposition by stream microbes. I used a combination of field observations, in-situ experiments, and a manipulative laboratory incubation to test (1) how dominant primary producers influence DOM chemical composition and ecosystem metabolism at the reach scale and (2) how DOM composition and nitrogen (N) content control microbial decomposition and stream uptake of DOM. I found that differences in streamwater DOM composition between two distinct reaches of Sycamore Creek did not affect in-situ stream respiration and gross primary production rates. Stream sediment microbial respiration rates did not differ significantly when incubated in the laboratory with DOM from wetland plants, algae, and leaf litter, thus all sources were similarly labile. However, whole-stream uptake of DOM increased from leaf to algal to wetland plant leachate. Desert streams have the potential to process DOM from leaf, wetland, and algal sources, though algal and wetland DOM, due to their more labile composition, can be more readily retained and mineralized.
ContributorsKemmitt, Kathrine (Author) / Grimm, Nancy (Thesis advisor) / Hartnett, Hilairy (Committee member) / Throop, Heather (Committee member) / Arizona State University (Publisher)
Created2018
157859-Thumbnail Image.png
Description
Soil organic carbon (SOC) is a critical component of the global carbon (C) cycle, accounting for more C than the biotic and atmospheric pools combined. Microbes play an important role in soil C cycling, with abiotic conditions such as soil moisture and temperature governing microbial activity and subsequent soil C

Soil organic carbon (SOC) is a critical component of the global carbon (C) cycle, accounting for more C than the biotic and atmospheric pools combined. Microbes play an important role in soil C cycling, with abiotic conditions such as soil moisture and temperature governing microbial activity and subsequent soil C processes. Predictions for future climate include warmer temperatures and altered precipitation regimes, suggesting impacts on future soil C cycling. However, it is uncertain how soil microbial communities and subsequent soil organic carbon pools will respond to these changes, particularly in dryland ecosystems. A knowledge gap exists in soil microbial community responses to short- versus long-term precipitation alteration in dryland systems. Assessing soil C cycle processes and microbial community responses under current and altered precipitation patterns will aid in understanding how C pools and cycling might be altered by climate change. This study investigates how soil microbial communities are influenced by established climate regimes and extreme changes in short-term precipitation patterns across a 1000 m elevation gradient in northern Arizona, where precipitation increases with elevation. Precipitation was manipulated (50% addition and 50% exclusion of ambient rainfall) for two summer rainy seasons at five sites across the elevation gradient. In situ and ex situ soil CO2 flux, microbial biomass C, extracellular enzyme activity, and SOC were measured in precipitation treatments in all sites. Soil CO2 flux, microbial biomass C, extracellular enzyme activity, and SOC were highest at the three highest elevation sites compared to the two lowest elevation sites. Within sites, precipitation treatments did not change microbial biomass C, extracellular enzyme activity, and SOC. Soil CO2 flux was greater under precipitation addition treatments than exclusion treatments at both the highest elevation site and second lowest elevation site. Ex situ respiration differed among the precipitation treatments only at the lowest elevation site, where respiration was enhanced in the precipitation addition plots. These results suggest soil C cycling will respond to long-term changes in precipitation, but pools and fluxes of carbon will likely show site-specific sensitivities to short-term precipitation patterns that are also expected with climate change.
ContributorsMonus, Brittney (Author) / Throop, Heather L (Thesis advisor) / Ball, Becky A (Committee member) / Hultine, Kevin R (Committee member) / Munson, Seth M (Committee member) / Arizona State University (Publisher)
Created2019
161303-Thumbnail Image.png
Description
Ecological phenomena act on various spatial and temporal scales. To understand what causes animal populations to build and decline depends heavily on abiotic and biotic conditions which vary spatiotemporally throughout the biosphere. One excel- lent example of animal populations dynamics is with locusts. Locusts are a subset of grasshoppers that

Ecological phenomena act on various spatial and temporal scales. To understand what causes animal populations to build and decline depends heavily on abiotic and biotic conditions which vary spatiotemporally throughout the biosphere. One excel- lent example of animal populations dynamics is with locusts. Locusts are a subset of grasshoppers that undergo periodical upsurges called swarms. Locust swarms have plagued human history by posing significant threats to global food security. For example, the 2003-2005 desert locust (Schistocerca gregaria) swarm destroyed 80%-100% of crops in the impacted areas and cost over US $500 million in mitigation as estimated by the Food and Agriculture Organization of the United Nations. An integrative multi-scale approach must be taken to effectively predict and manage locust swarms. For my dissertation, I looked at the ecological causes of locust swarms on multiple scales using both the Australian plague locust (Chortoicetes terminifera) and desert locust as focal species. At the microhabitat scale, I demonstrated how shifts in the nutritional landscape can influence locust gregarization. At the field level, I show that locust populations avoid woody vegetation likely due to the interactive effect of plant nutrients, temperature, and predators. At the landscape level, I show that adaptations to available nutrient variation depends on life history strategies, such as migratory capabilities. A strong metapopulation structure may aid in the persistence of locust species at larger spatial scales. Lastly, at the continental scale I show the relationship between preceding vegetation and locust outbreaks vary considerably between regions and seasons. However, regardless of this variation, the spatiotemporal structure of geographic zone > bioregion > season holds constant in two locust species. Understanding the biologically relevant spatial and temporal scales from individual gregarization (e.g. micro-habitat) to massive swarms (e.g. landscape to continental) is important to accurately predicting where and when outbreaks will happen. Overall, my research highlights that understanding animal population dynamics requires a multi-scale and trans-disciplinary approach. Into the future, integrating locust re- search from organismal to landscape levels can aid in forecasting where and when locust outbreaks occur.
ContributorsLawton, Douglas (Author) / Cease, Arianne J (Thesis advisor) / Waters, Cathy (Thesis advisor) / Throop, Heather (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2021