Matching Items (2)
Filtering by

Clear all filters

156846-Thumbnail Image.png
Description
Nowadays, the widespread introduction of distributed generators (DGs) brings great challenges to the design, planning, and reliable operation of the power system. Therefore, assessing the capability of a distribution network to accommodate renewable power generations is urgent and necessary. In this respect, the concept of hosting capacity (HC) is generally

Nowadays, the widespread introduction of distributed generators (DGs) brings great challenges to the design, planning, and reliable operation of the power system. Therefore, assessing the capability of a distribution network to accommodate renewable power generations is urgent and necessary. In this respect, the concept of hosting capacity (HC) is generally accepted by engineers to evaluate the reliability and sustainability of the system with high penetration of DGs. For HC calculation, existing research provides simulation-based methods which are not able to find global optimal. Others use OPF (optimal power flow) based methods where

too many constraints prevent them from obtaining the solution exactly. They also can not get global optimal solution. Due to this situation, I proposed a new methodology to overcome the shortcomings. First, I start with an optimization problem formulation and provide a flexible objective function to satisfy different requirements. Power flow equations are the basic rule and I transfer them from the commonly used polar coordinate to the rectangular coordinate. Due to the operation criteria, several constraints are

incrementally added. I aim to preserve convexity as much as possible so that I can obtain optimal solution. Second, I provide the geometric view of the convex problem model. The process to find global optimal can be visualized clearly. Then, I implement segmental optimization tool to speed up the computation. A large network is able to be divided into segments and calculated in parallel computing where the results stay the same. Finally, the robustness of my methodology is demonstrated by doing extensive simulations regarding IEEE distribution networks (e.g. 8-bus, 16-bus, 32-bus, 64-bus, 128-bus). Thus, it shows that the proposed method is verified to calculate accurate hosting capacity and ensure to get global optimal solution.
ContributorsYuan, Jingyi (Author) / Weng, Yang (Thesis advisor) / Lei, Qin (Committee member) / Khorsand, Mojdeh (Committee member) / Arizona State University (Publisher)
Created2018
157154-Thumbnail Image.png
Description
Over the years, the growing penetration of renewable energy into the electricity market has resulted in a significant change in the electricity market price. This change makes the existing forecasting method prone to error, decreasing the economic benefits. Hence, more precise forecasting methods need to be developed. This paper starts

Over the years, the growing penetration of renewable energy into the electricity market has resulted in a significant change in the electricity market price. This change makes the existing forecasting method prone to error, decreasing the economic benefits. Hence, more precise forecasting methods need to be developed. This paper starts with a survey and benchmark of existing machine learning approaches for forecasting the real-time market (RTM) price. While these methods provide sufficient modeling capability via supervised learning, their accuracy is still limited due to the single data source, e.g., historical price information only. In this paper, a novel two-stage supervised learning approach is proposed by diversifying the data sources such as highly correlated power data. This idea is inspired by the recent load forecasting methods that have shown extremely well performances. Specifically, the proposed two-stage method, namely the rerouted method, learns two types of mapping rules. The first one is the mapping between the historical wind power and the historical price. The second is the forecasting rule for wind generation. Based on the two rules, we forecast the price via the forecasted generation and the first learned mapping between power and price. Additionally, we observed that it is not the more training data the better, leading to our validation steps to quantify the best training intervals for different datasets. We conduct comparisons of numerical results between existing methods and the proposed methods based on datasets from the Electric Reliability Council of Texas (ERCOT). For each machine learning step, we examine different learning methods, such as polynomial regression, support vector regression, neural network, and deep neural network. The results show that the proposed method is significantly better than existing approaches when renewables are involved.
ContributorsLuo, Shuman (Author) / Weng, Yang (Thesis advisor) / Lei, Qin (Committee member) / Qin, Jiangchao (Committee member) / Arizona State University (Publisher)
Created2019