Matching Items (2)
Filtering by

Clear all filters

157465-Thumbnail Image.png
Description
Parkinson’s disease (PD) is a neurological disorder with complicated and disabling motor and non-motor symptoms. The pathology for PD is difficult and expensive. Furthermore, it depends on patient diaries and the neurologist’s subjective assessment of clinical scales. Objective, accurate, and continuous patient monitoring have become possible with the

Parkinson’s disease (PD) is a neurological disorder with complicated and disabling motor and non-motor symptoms. The pathology for PD is difficult and expensive. Furthermore, it depends on patient diaries and the neurologist’s subjective assessment of clinical scales. Objective, accurate, and continuous patient monitoring have become possible with the advancement in mobile and portable equipment. Consequently, a significant amount of work has been done to explore new cost-effective and subjective assessment methods or PD symptoms. For example, smart technologies, such as wearable sensors and optical motion capturing systems, have been used to analyze the symptoms of a PD patient to assess their disease progression and even to detect signs in their nascent stage for early diagnosis of PD.

This review focuses on the use of modern equipment for PD applications that were developed in the last decade. Four significant fields of research were identified: Assistance diagnosis, Prognosis or Monitoring of Symptoms and their Severity, Predicting Response to Treatment, and Assistance to Therapy or Rehabilitation. This study reviews the papers published between January 2008 and December 2018 in the following four databases: Pubmed Central, Science Direct, IEEE Xplore and MDPI. After removing unrelated articles, ones published in languages other than English, duplicate entries and other articles that did not fulfill the selection criteria, 778 papers were manually investigated and included in this review. A general overview of PD applications, devices used and aspects monitored for PD management is provided in this systematic review.
ContributorsDeb, Ranadeep (Author) / Ogras, Umit Y. (Thesis advisor) / Shill, Holly (Committee member) / Chakrabarti, Chaitali (Committee member) / Arizona State University (Publisher)
Created2019
Description
Movement disorders are becoming one of the leading causes of functional disability due to aging populations and extended life expectancy. Diagnosis, treatment, and rehabilitation currently depend on the behavior observed in a clinical environment. After the patient leaves the clinic, there is no standard approach to continuously monitor the patient

Movement disorders are becoming one of the leading causes of functional disability due to aging populations and extended life expectancy. Diagnosis, treatment, and rehabilitation currently depend on the behavior observed in a clinical environment. After the patient leaves the clinic, there is no standard approach to continuously monitor the patient and report potential problems. Furthermore, self-recording is inconvenient and unreliable. To address these challenges, wearable health monitoring is emerging as an effective way to augment clinical care for movement disorders.

Wearable devices are being used in many health, fitness, and activity monitoring applications. However, their widespread adoption has been hindered by several adaptation and technical challenges. First, conventional rigid devices are uncomfortable to wear for long periods. Second, wearable devices must operate under very low-energy budgets due to their small battery capacities. Small batteries create a need for frequent recharging, which in turn leads users to stop using them. Third, the usefulness of wearable devices must be demonstrated through high impact applications such that users can get value out of them.

This dissertation presents solutions to solving the challenges faced by wearable devices. First, it presents an open-source hardware/software platform for wearable health monitoring. The proposed platform uses flexible hybrid electronics to enable devices that conform to the shape of the user’s body. Second, it proposes an algorithm to enable recharge-free operation of wearable devices that harvest energy from the environment. The proposed solution maximizes the performance of the wearable device under minimum energy constraints. The results of the proposed algorithm are, on average, within 3% of the optimal solution computed offline. Third, a comprehensive framework for human activity recognition (HAR), one of the first steps towards a solution for movement disorders is presented. It starts with an online learning framework for HAR. Experiments on a low power IoT device (TI-CC2650 MCU) with twenty-two users show 95% accuracy in identifying seven activities and their transitions with less than 12.5 mW power consumption. The online learning framework is accompanied by a transfer learning approach for HAR that determines the number of neural network layers to transfer among uses to enable efficient online learning. Next, a technique to co-optimize the accuracy and active time of wearable applications by utilizing multiple design points with different energy-accuracy trade-offs is presented. The proposed technique switches between the design points at runtime to maximize a generalized objective function under tight harvested energy budget constraints. Finally, we present the first ultra-low-energy hardware accelerator that makes it practical to perform HAR on energy harvested from wearable devices. The accelerator consumes 22.4 microjoules per operation using a commercial 65 nm technology. In summary, the solutions presented in this dissertation can enable the wider adoption of wearable devices.
ContributorsBhat, Ganapati (Author) / Ogras, Umit Y. (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Nedić, Angelia (Committee member) / Marculescu, Radu (Committee member) / Arizona State University (Publisher)
Created2020