Matching Items (4)
Filtering by

Clear all filters

151977-Thumbnail Image.png
Description
Global climate change (GCC) is among the most important issues of the 21st century. Adaptation to and mitigation of climate change are some of the salient local and regional challenges scientists, decision makers, and the general public face today and will be in the near future. However, designed adaptation and

Global climate change (GCC) is among the most important issues of the 21st century. Adaptation to and mitigation of climate change are some of the salient local and regional challenges scientists, decision makers, and the general public face today and will be in the near future. However, designed adaptation and mitigation strategies do not guarantee success in coping with global climate change. Despite the robust and convincing body for anthropogenic global climate change research and science there is still a significant gap between the recommendations provided by the scientific community and the actual actions by the public and policy makers. In order to design, implement, and generate sufficient public support for policies and planning interventions at the national and international level, it is necessary to have a good understanding of the public's perceptions regarding GCC. Based on survey research in nine countries, the purpose of this study is two-fold: First, to understand the nature of public perceptions of global climate change in different countries; and secondly to identi-fy perception factors which have a significant impact on the public's willingness to sup-port GCC policies or commit to behavioral changes to reduce GHG emissions. Factors such as trust in GCC information which need to be considered in future climate change communication efforts are also dealt with in this dissertation. This study has identified several aspects that need to be considered in future communication programs. GCC is characterized by high uncertainties, unfamiliar risks, and other characteristics of hazards which make personal connections, responsibility and engagement difficult. Communication efforts need to acknowledge these obstacles, build up trust and motivate the public to be more engaged in reducing GCC by emphasizing the multiple benefits of many policies outside of just reducing GCC. Levels of skepticism among the public towards the reality of GCC as well as the trustworthiness and sufficien-cy of the scientific findings varies by country. Thus, communicators need to be aware of their audience in order to decide how educational their program needs to be.
ContributorsHagen, Bjoern (Author) / Pijawka, David (Thesis advisor) / Brazel, Anthony (Committee member) / Chhetri, Netra (Committee member) / Guhathakurta, Subhrajit (Committee member) / Arizona State University (Publisher)
Created2013
152296-Thumbnail Image.png
Description
Ten regional climate models (RCMs) and atmosphere-ocean generalized model parings from the North America Regional Climate Change Assessment Program were used to estimate the shift of extreme precipitation due to climate change using present-day and future-day climate scenarios. RCMs emulate winter storms and one-day duration events at the sub-regional level.

Ten regional climate models (RCMs) and atmosphere-ocean generalized model parings from the North America Regional Climate Change Assessment Program were used to estimate the shift of extreme precipitation due to climate change using present-day and future-day climate scenarios. RCMs emulate winter storms and one-day duration events at the sub-regional level. Annual maximum series were derived for each model pairing, each modeling period; and for annual and winter seasons. The reliability ensemble average (REA) method was used to qualify each RCM annual maximum series to reproduce historical records and approximate average predictions, because there are no future records. These series determined (a) shifts in extreme precipitation frequencies and magnitudes, and (b) shifts in parameters during modeling periods. The REA method demonstrated that the winter season had lower REA factors than the annual season. For the winter season the RCM pairing of the Hadley regional Model 3 and the Geophysical Fluid-Dynamics Laboratory atmospheric-land generalized model had the lowest REA factors. However, in replicating present-day climate, the pairing of the Abdus Salam International Center for Theoretical Physics' Regional Climate Model Version 3 with the Geophysical Fluid-Dynamics Laboratory atmospheric-land generalized model was superior. Shifts of extreme precipitation in the 24-hour event were measured using precipitation magnitude for each frequency in the annual maximum series, and the difference frequency curve in the generalized extreme-value-function parameters. The average trend of all RCM pairings implied no significant shift in the winter annual maximum series, however the REA-selected models showed an increase in annual-season precipitation extremes: 0.37 inches for the 100-year return period and for the winter season suggested approximately 0.57 inches for the same return period. Shifts of extreme precipitation were estimated using predictions 70 years into the future based on RCMs. Although these models do not provide climate information for the intervening 70 year period, the models provide an assertion on the behavior of future climate. The shift in extreme precipitation may be significant in the frequency distribution function, and will vary depending on each model-pairing condition. The proposed methodology addresses the many uncertainties associated with the current methodologies dealing with extreme precipitation.
ContributorsRiaño, Alejandro (Author) / Mays, Larry W. (Thesis advisor) / Vivoni, Enrique (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
151174-Thumbnail Image.png
Description
The North American Monsoon (NAM) is characterized by high inter- and intra-seasonal variability, and potential climate change effects have been forecasted to increase this variability. The potential effects of climate change to the hydrology of the southwestern U.S. is of interest as they could have consequences to water resources, floods,

The North American Monsoon (NAM) is characterized by high inter- and intra-seasonal variability, and potential climate change effects have been forecasted to increase this variability. The potential effects of climate change to the hydrology of the southwestern U.S. is of interest as they could have consequences to water resources, floods, and land management. I applied a distributed watershed model, the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS), to the Beaver Creek basin in Arizona. This sub-basin of the Verde River is representative of the regional topography, land cover, and soils distribution. As such, it can serve to illustrate the utility of distributed models for change assessment studies. Model calibration was performed utilizing radar-based NEXRAD data, and comparisons were done to two additional sources of precipitation data: ground-based stations and the North American Land Data Assimilation System (NLDAS). Comparisons focus on the spatiotemporal distributions of precipitation and stream discharge. Utilizing the calibrated model, I applied scenarios from the HadCM3 General Circulation Model (GCM) which was dynamically downscaled by the Weather Research and Forecast (WRF) model, to refine the representation of Arizona's regional climate. Two time periods were examined, a historical 1990-2000 and a future 2031-2040, to evaluate the hydrologic consequence in the form of differences and similarities between the decadal averages for temperature, precipitation, stream discharge and evapotranspiration. Results indicate an increase in mean air temperature over the basin by 1.2 ºC. The average decadal precipitation amounts increased between the two time periods by 2.4 times that of the historical period and had an increase in variability that was 3 times the historical period. For the future period, modeled streamflow discharge in the summer increased by a factor of 3. There was no significant change in the average evapotranspiration (ET). Overall trends of increase precipitation and variability for future climate scenarios have a more significant effect on the hydrologic response than temperature increases in the system during NAM in this study basin. The results from this study suggest that water management in the Beaver Creek will need to adapt to higher summer streamflow amounts.
ContributorsHawkins, Gretchen (Author) / Vivoni, Enrique R. (Thesis advisor) / Semken, Steven (Committee member) / Mays, Larry W. (Committee member) / Arizona State University (Publisher)
Created2012
153724-Thumbnail Image.png
Description
The most recent decision of the 2012 Conference of the Parties (CoP) to the United Nations Framework Convention on Climate Change (UNFCCC) recognizes that in order to create climate policies that respond to the different needs of men and women a more balanced representation of women from developed and developing

The most recent decision of the 2012 Conference of the Parties (CoP) to the United Nations Framework Convention on Climate Change (UNFCCC) recognizes that in order to create climate policies that respond to the different needs of men and women a more balanced representation of women from developed and developing countries is needed. National Adaptation Programmes of Action (NAPAs) provide a process for Least Developed Countries (LDCs) to “identify priority activities that respond to their urgent and immediate needs to respond to impending threats from climate change.” Since 1997, the United Nations has agreed to gender mainstreaming- a globally accepted strategy for promoting gender equality by ensuring that gender perspectives and attention to the goal of gender equality are central to all activities in the all UN systems.

Due to the gender division of labor climate change will affect men and women differently. Policies and programs that do not take into account the needs and capacities of both men and women will fail to be effective and may worsen preexisting conditions that historically favor men. My research investigates the UN’s commitment towards gender mainstreaming. More specifically my objective is to understand how and to what extent the NAPAs from 49 countries integrate a gender dimension into their national climate adaptation policy. For the purpose of this research, I consider three interrelated issues: whether gender-specific needs and vulnerabilities were identified by the NAPA; if these needs and vulnerabilities were addressed by proposed adaptation projects; and in what forms women participated in the formulation of the NAPA. The scope of this research begins with an overview assessment of 49 NAPAs followed by a comparative assessment of NAPAs from four countries- Afghanistan, Bangladesh, Maldives, and Niger, and an in-depth analysis of Nepal’s NAPA, which incorporates field study. Nepal was chosen as a focus country due to its identification as being both inclusive and gender sensitive.

The method of inquiry consists of both quantitative and qualitative analysis, utilizing the quantitative measures of HDI and GII and the qualitative methods of content analysis and case study. The findings suggest that the response to the gender dimensions of climate change found in adaptation policies vary widely among the LDCs and the level of response is dependent upon social, cultural, economic, and political contexts within each LDC. Additionally, I find that gender mainstreaming techniques have not been fully integrated into the NAPA policy and processes, and have not been effective at promoting gender equality through adaptation strategies. Recommendations are provided in order to help mainstream gender in NAPAs as they continue to be developed, revised, and implemented.
ContributorsAnagnostou, Sotiria (Author) / Chhetri, Netra (Thesis advisor) / Hackett, Edward (Committee member) / Hibner-Koblitz, Ann (Committee member) / Arizona State University (Publisher)
Created2015