Matching Items (4)
Filtering by

Clear all filters

152007-Thumbnail Image.png
Description
The implications of a changing climate have a profound impact on human life, society, and policy making. The need for accurate climate prediction becomes increasingly important as we better understand these implications. Currently, the most widely used climate prediction relies on the synthesis of climate model simulations organized by the

The implications of a changing climate have a profound impact on human life, society, and policy making. The need for accurate climate prediction becomes increasingly important as we better understand these implications. Currently, the most widely used climate prediction relies on the synthesis of climate model simulations organized by the Coupled Model Intercomparison Project (CMIP); these simulations are ensemble-averaged to construct projections for the 21st century climate. However, a significant degree of bias and variability in the model simulations for the 20th century climate is well-known at both global and regional scales. Based on that insight, this study provides an alternative approach for constructing climate projections that incorporates knowledge of model bias. This approach is demonstrated to be a viable alternative which can be easily implemented by water resource managers for potentially more accurate projections. Tests of the new approach are provided on a global scale with an emphasis on semiarid regional studies for their particular vulnerability to water resource changes, using both the former CMIP Phase 3 (CMIP3) and current Phase 5 (CMIP5) model archives. This investigation is accompanied by a detailed analysis of the dynamical processes and water budget to understand the behaviors and sources of model biases. Sensitivity studies of selected CMIP5 models are also performed with an atmospheric component model by testing the relationship between climate change forcings and model simulated response. The information derived from each study is used to determine the progressive quality of coupled climate models in simulating the global water cycle by rigorously investigating sources of model bias related to the moisture budget. As such, the conclusions of this project are highly relevant to model development and potentially may be used to further improve climate projections.
ContributorsBaker, Noel C (Author) / Huang, Huei-Ping (Thesis advisor) / Trimble, Steve (Committee member) / Anderson, James (Committee member) / Clarke, Amanda (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2013
152296-Thumbnail Image.png
Description
Ten regional climate models (RCMs) and atmosphere-ocean generalized model parings from the North America Regional Climate Change Assessment Program were used to estimate the shift of extreme precipitation due to climate change using present-day and future-day climate scenarios. RCMs emulate winter storms and one-day duration events at the sub-regional level.

Ten regional climate models (RCMs) and atmosphere-ocean generalized model parings from the North America Regional Climate Change Assessment Program were used to estimate the shift of extreme precipitation due to climate change using present-day and future-day climate scenarios. RCMs emulate winter storms and one-day duration events at the sub-regional level. Annual maximum series were derived for each model pairing, each modeling period; and for annual and winter seasons. The reliability ensemble average (REA) method was used to qualify each RCM annual maximum series to reproduce historical records and approximate average predictions, because there are no future records. These series determined (a) shifts in extreme precipitation frequencies and magnitudes, and (b) shifts in parameters during modeling periods. The REA method demonstrated that the winter season had lower REA factors than the annual season. For the winter season the RCM pairing of the Hadley regional Model 3 and the Geophysical Fluid-Dynamics Laboratory atmospheric-land generalized model had the lowest REA factors. However, in replicating present-day climate, the pairing of the Abdus Salam International Center for Theoretical Physics' Regional Climate Model Version 3 with the Geophysical Fluid-Dynamics Laboratory atmospheric-land generalized model was superior. Shifts of extreme precipitation in the 24-hour event were measured using precipitation magnitude for each frequency in the annual maximum series, and the difference frequency curve in the generalized extreme-value-function parameters. The average trend of all RCM pairings implied no significant shift in the winter annual maximum series, however the REA-selected models showed an increase in annual-season precipitation extremes: 0.37 inches for the 100-year return period and for the winter season suggested approximately 0.57 inches for the same return period. Shifts of extreme precipitation were estimated using predictions 70 years into the future based on RCMs. Although these models do not provide climate information for the intervening 70 year period, the models provide an assertion on the behavior of future climate. The shift in extreme precipitation may be significant in the frequency distribution function, and will vary depending on each model-pairing condition. The proposed methodology addresses the many uncertainties associated with the current methodologies dealing with extreme precipitation.
ContributorsRiaño, Alejandro (Author) / Mays, Larry W. (Thesis advisor) / Vivoni, Enrique (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
150501-Thumbnail Image.png
Description
Recent literature indicates potential benefits in microchannel cooling if an inlet orifice is used to suppress pressure oscillations that develop under two-phase conditions. This study investigates the costs and benefits of using an adjustable microchannel inlet orifice. The focus is on orifice effect during steady-state boiling and critical heat flux

Recent literature indicates potential benefits in microchannel cooling if an inlet orifice is used to suppress pressure oscillations that develop under two-phase conditions. This study investigates the costs and benefits of using an adjustable microchannel inlet orifice. The focus is on orifice effect during steady-state boiling and critical heat flux (CHF) in the channels using R134a in a pumped refrigerant loop (PRL). To change orifice size, a dam controlled with a micrometer was placed in front of 31 parallel microchannels. Each channel had a hydraulic diameter of 0.235 mm and a length of 1.33 cm. For steady state two-phase conditions, mass fluxes of 300 kg m-2 s-1 and 600 kg m-2 s-1were investigated. For orifice sizes with a hydraulic diameter to unrestricted hydraulic diameter (Dh:Dh,ur) ratio less than 35 percent, oscillations were reduced and wall temperatures fell up to 1.5 °C. Critical heat flux data were obtained for 7 orifice sizes with mass fluxes from 186 kg m-2 s-1 to 847 kg m-2 s-1. For all mass fluxes and inlet conditions tested, CHF values for a Dh:Dh,ur ratio of 1.8 percent became increasingly lower (up to 37 W cm-2 less) than those obtained with larger orifices. An optimum orifice size with Dh:Dh,ur of 35 percent emerged, offering up to 5 W cm-2 increase in CHF over unrestricted conditions at the highest mass flux tested, 847 kg m-2 s-1. These improvements in cooling ability with inlet orifices in place under both steady-state and impending CHF conditions are modest, leading to the conclusion that inlet orifices are only mildly effective at improving heat transfer coefficients. Stability of the PRL used for experimentation was also studied and improved. A vapor compression cycle's (VCC) proportional, integral, and derivative controller was found to adversely affect stability within the PRL and cause premature CHF. Replacing the VCC with an ice water heat sink maintained steady pumped loop system pressures and mass flow rates. The ice water heat sink was shown to have energy cost savings over the use of a directly coupled VCC for removing heat from the PRL.
ContributorsOdom, Brent A (Author) / Phelan, Patrick E (Thesis advisor) / Herrmann, Marcus (Committee member) / Trimble, Steve (Committee member) / Tasooji, Amaneh (Committee member) / Holcomb, Don (Committee member) / Arizona State University (Publisher)
Created2012
151174-Thumbnail Image.png
Description
The North American Monsoon (NAM) is characterized by high inter- and intra-seasonal variability, and potential climate change effects have been forecasted to increase this variability. The potential effects of climate change to the hydrology of the southwestern U.S. is of interest as they could have consequences to water resources, floods,

The North American Monsoon (NAM) is characterized by high inter- and intra-seasonal variability, and potential climate change effects have been forecasted to increase this variability. The potential effects of climate change to the hydrology of the southwestern U.S. is of interest as they could have consequences to water resources, floods, and land management. I applied a distributed watershed model, the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS), to the Beaver Creek basin in Arizona. This sub-basin of the Verde River is representative of the regional topography, land cover, and soils distribution. As such, it can serve to illustrate the utility of distributed models for change assessment studies. Model calibration was performed utilizing radar-based NEXRAD data, and comparisons were done to two additional sources of precipitation data: ground-based stations and the North American Land Data Assimilation System (NLDAS). Comparisons focus on the spatiotemporal distributions of precipitation and stream discharge. Utilizing the calibrated model, I applied scenarios from the HadCM3 General Circulation Model (GCM) which was dynamically downscaled by the Weather Research and Forecast (WRF) model, to refine the representation of Arizona's regional climate. Two time periods were examined, a historical 1990-2000 and a future 2031-2040, to evaluate the hydrologic consequence in the form of differences and similarities between the decadal averages for temperature, precipitation, stream discharge and evapotranspiration. Results indicate an increase in mean air temperature over the basin by 1.2 ºC. The average decadal precipitation amounts increased between the two time periods by 2.4 times that of the historical period and had an increase in variability that was 3 times the historical period. For the future period, modeled streamflow discharge in the summer increased by a factor of 3. There was no significant change in the average evapotranspiration (ET). Overall trends of increase precipitation and variability for future climate scenarios have a more significant effect on the hydrologic response than temperature increases in the system during NAM in this study basin. The results from this study suggest that water management in the Beaver Creek will need to adapt to higher summer streamflow amounts.
ContributorsHawkins, Gretchen (Author) / Vivoni, Enrique R. (Thesis advisor) / Semken, Steven (Committee member) / Mays, Larry W. (Committee member) / Arizona State University (Publisher)
Created2012