Matching Items (4)
Filtering by

Clear all filters

Description
The building sector is responsible for consuming the largest proportional share of global material and energy resources. Some observers assert that buildings are the problem and the solution to climate change. It appears that in the United States a coherent national energy policy to encourage rapid building performance improvements is

The building sector is responsible for consuming the largest proportional share of global material and energy resources. Some observers assert that buildings are the problem and the solution to climate change. It appears that in the United States a coherent national energy policy to encourage rapid building performance improvements is not imminent. In this environment, where many climate and ecological scientists believe we are running out of time to reverse the effects of anthropogenic climate change, a local grass-roots effort to create demonstration net zero-energy buildings (ZEB) appears necessary. This paper documents the process of designing a ZEB in a community with no existing documented ZEB precedent. The project will establish a framework for collecting design, performance, and financial data for use by architects, building scientists, and the community at large. This type of information may prove critical in order to foster a near-term local demand for net zero-energy buildings.
ContributorsFrancis, Alan Merrill (Author) / Bryan, Harvey (Thesis advisor) / Addison, Marlin (Committee member) / Ramalingam, Muthukumar (Committee member) / Arizona State University (Publisher)
Created2014
150762-Thumbnail Image.png
Description
Building Envelope includes walls, roofs and openings, which react to the outdoor environmental condition. Today, with the increasing use of glass in building envelope, the energy usage of the buildings is increasing, especially in the offices and commercial buildings. Use of right glass type and control triggers helps to optimize

Building Envelope includes walls, roofs and openings, which react to the outdoor environmental condition. Today, with the increasing use of glass in building envelope, the energy usage of the buildings is increasing, especially in the offices and commercial buildings. Use of right glass type and control triggers helps to optimize the energy use, by tradeoff between optical and thermal properties. The part of the research looks at the different control triggers and its range that governs the use of electrochromic glass to regulate the energy usage in building. All different control trigger that can be possibly used for regulating the clear and tint state of glass were analyzed with most appropriate range. Its range was triggered such that 80% time of the glass is trigger between the ranges. The other building parameters like window wall ratio and orientations were also investigated. The other half of the research study looks into the feasibility of using the Electrochromic windows, as it is ought to be the main factor governing the market usage of Electrochromic windows and to investigate the possible ways to make it feasible. Different LCC parameters were studied to make it market feasible product. This study shows that installing this technology with most appropriate trigger range can reduce annual building energy consumption from 6-8% but still cost of the technology is 3 times the ASHRAE glass, which results in 70-90 years of payback. This study concludes that south orientation saves up to 3-5% of energy and 4-6% of cooling tons while north orientation gives negligible saving using EC glass. LCC parameters show that there is relative change in increasing the net saving for different parameters but none except 50% of the present glass cost is the possible option where significant change is observed.
ContributorsMunshi, Kavish Prakash (Author) / Bryan, Harvey (Thesis advisor) / Reddy, Agami (Committee member) / Addison, Marlin (Committee member) / Arizona State University (Publisher)
Created2012
150463-Thumbnail Image.png
Description
The Urban Heat Island (UHI) has been known to have been around from as long as people have been urbanizing. The growth and conglomeration of cities in the past century has caused an increase in the intensity and impact of Urban Heat Island, causing significant changes to the micro-climate and

The Urban Heat Island (UHI) has been known to have been around from as long as people have been urbanizing. The growth and conglomeration of cities in the past century has caused an increase in the intensity and impact of Urban Heat Island, causing significant changes to the micro-climate and causing imbalances in the temperature patterns of cities. The urban heat island (UHI) is a well established phenomenon and it has been attributed to the reduced heating loads and increased cooling loads, impacting the total energy consumption of affected buildings in all climatic regions. This thesis endeavors to understand the impact of the urban heat island on the typical buildings in the Phoenix Metropolitan region through an annual energy simulation process spanning through the years 1950 to 2005. Phoenix, as a representative city for the hot-arid cooling-dominated region, would be an interesting example to see how the reduction in heating energy consumption offsets the increased demand for cooling energy in the building. The commercial reference building models from the Department of Energy have been used to simulate commercial building stock, while for the residential stock a representative residential model prescribing to IECC 2006 standards will be used. The multiyear simulation process will bring forth the energy consumptions of various building typologies, thus highlighting differing impacts on the various building typologies. A vigorous analysis is performed to see the impact on the cooling loads annually, specifically during summer and summer nights, when the impact of the 'atmospheric canopy layer' - urban heat island (UHI) causes an increase in the summer night time minimum and night time average temperatures. This study also shows the disparity in results of annual simulations run utilizing a typical meteorological year (TMY) weather file, to that of the current recorded weather data. The under prediction due to the use of TMY would translate to higher or lower predicted energy savings in the future years, for changes made to the efficiencies of the cooling or heating systems and thermal performance of the built-forms. The change in energy usage patterns caused by higher cooling energy and lesser heating energy consumptions could influence future policies and energy conservation standards. This study could also be utilized to understand the impacts of the equipment sizing protocols currently adopted, equipment use and longevity and fuel swapping as heating cooling ratios change.
ContributorsDoddaballapur, Sandeep (Author) / Bryan, Harvey (Thesis advisor) / Reddy, Agami T (Committee member) / Addison, Marlin (Committee member) / Arizona State University (Publisher)
Created2011
149515-Thumbnail Image.png
Description
With the increasing interest in energy efficient building design, whole building energy simulation programs are increasingly employed in the design process to help architects and engineers determine which design alternatives save energy and are cost effective. DOE-2 is one of the most popular programs used by the building energy simulation

With the increasing interest in energy efficient building design, whole building energy simulation programs are increasingly employed in the design process to help architects and engineers determine which design alternatives save energy and are cost effective. DOE-2 is one of the most popular programs used by the building energy simulation community. eQUEST is a powerful graphic user interface for the DOE-2 engine. EnergyPlus is the newest generation simulation program under development by the U.S. Department of Energy which adds new modeling features beyond the DOE-2's capability. The new modeling capabilities of EnergyPlus make it possible to model new and complex building technologies which cannot be modeled by other whole building energy simulation programs. On the other hand, EnergyPlus models, especially with a large number of zones, run much slower than those of eQUEST. Both eQUEST and EnergyPlus offer their own set of advantages and disadvantages. The choice of which building simulation program should be used might vary in each case. The purpose of this thesis is to investigate the potential of both the programs to do the whole building energy analysis and compare the results with the actual building energy performance. For this purpose the energy simulation of a fully functional building is done in eQUEST and EnergyPlus and the results were compared with utility data of the building to identify the degree of closeness with which simulation results match with the actual heat and energy flows in building. It was observed in this study that eQUEST is easy to use and quick in producing results that would especially help in the taking critical decisions during the design phase. On the other hand EnergyPlus aids in modeling complex systems, producing more accurate results, but consumes more time. The choice of simulation program might change depending on the usability and applicability of the program to our need in different phases of a building's lifecycle. Therefore, it makes sense if a common front end is designed for both these simulation programs thereby allowing the user to select either the DOE-2.2 engine or the EnergyPlus engine based upon the need in each particular case.
ContributorsRallapalli, Hema Sree (Author) / Bryan, Harvey (Thesis advisor) / Addison, Marlin (Committee member) / Reddy, Agami (Committee member) / Arizona State University (Publisher)
Created2010