Matching Items (4)
Filtering by

Clear all filters

152007-Thumbnail Image.png
Description
The implications of a changing climate have a profound impact on human life, society, and policy making. The need for accurate climate prediction becomes increasingly important as we better understand these implications. Currently, the most widely used climate prediction relies on the synthesis of climate model simulations organized by the

The implications of a changing climate have a profound impact on human life, society, and policy making. The need for accurate climate prediction becomes increasingly important as we better understand these implications. Currently, the most widely used climate prediction relies on the synthesis of climate model simulations organized by the Coupled Model Intercomparison Project (CMIP); these simulations are ensemble-averaged to construct projections for the 21st century climate. However, a significant degree of bias and variability in the model simulations for the 20th century climate is well-known at both global and regional scales. Based on that insight, this study provides an alternative approach for constructing climate projections that incorporates knowledge of model bias. This approach is demonstrated to be a viable alternative which can be easily implemented by water resource managers for potentially more accurate projections. Tests of the new approach are provided on a global scale with an emphasis on semiarid regional studies for their particular vulnerability to water resource changes, using both the former CMIP Phase 3 (CMIP3) and current Phase 5 (CMIP5) model archives. This investigation is accompanied by a detailed analysis of the dynamical processes and water budget to understand the behaviors and sources of model biases. Sensitivity studies of selected CMIP5 models are also performed with an atmospheric component model by testing the relationship between climate change forcings and model simulated response. The information derived from each study is used to determine the progressive quality of coupled climate models in simulating the global water cycle by rigorously investigating sources of model bias related to the moisture budget. As such, the conclusions of this project are highly relevant to model development and potentially may be used to further improve climate projections.
ContributorsBaker, Noel C (Author) / Huang, Huei-Ping (Thesis advisor) / Trimble, Steve (Committee member) / Anderson, James (Committee member) / Clarke, Amanda (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2013
Description
This thesis seeks to further explore off-design point operation of gas turbines and to examine the capabilities of GasTurb 12 as a tool for off-design analysis. It is a continuation of previous thesis work which initially explored the capabilities of GasTurb 12. The research is conducted in order to: 1)

This thesis seeks to further explore off-design point operation of gas turbines and to examine the capabilities of GasTurb 12 as a tool for off-design analysis. It is a continuation of previous thesis work which initially explored the capabilities of GasTurb 12. The research is conducted in order to: 1) validate GasTurb 12 and, 2) predict off-design performance of the Garrett GTCP85-98D located at the Arizona State University Tempe campus. GasTurb 12 is validated as an off-design point tool by using the program to predict performance of an LM2500+ marine gas turbine. Haglind and Elmegaard (2009) published a paper detailing a second off-design point method and it includes the manufacturer's off-design point data for the LM2500+. GasTurb 12 is used to predict off-design point performance of the LM2500+ and compared to the manufacturer's data. The GasTurb 12 predictions show good correlation. Garrett has published specification data for the GTCP85-98D. This specification data is analyzed to determine the design point and to comment on off-design trends. Arizona State University GTCP85-98D off-design experimental data is evaluated. Trends presented in the data are commented on and explained. The trends match the expected behavior demonstrated in the specification data for the same gas turbine system. It was originally intended that a model of the GTCP85-98D be constructed in GasTurb 12 and used to predict off-design performance. The prediction would be compared to collected experimental data. This is not possible because the free version of GasTurb 12 used in this research does not have a module to model a single spool turboshaft. This module needs to be purchased for this analysis.
ContributorsMartinjako, Jeremy (Author) / Trimble, Steve (Thesis advisor) / Dahm, Werner (Committee member) / Middleton, James (Committee member) / Arizona State University (Publisher)
Created2014
150501-Thumbnail Image.png
Description
Recent literature indicates potential benefits in microchannel cooling if an inlet orifice is used to suppress pressure oscillations that develop under two-phase conditions. This study investigates the costs and benefits of using an adjustable microchannel inlet orifice. The focus is on orifice effect during steady-state boiling and critical heat flux

Recent literature indicates potential benefits in microchannel cooling if an inlet orifice is used to suppress pressure oscillations that develop under two-phase conditions. This study investigates the costs and benefits of using an adjustable microchannel inlet orifice. The focus is on orifice effect during steady-state boiling and critical heat flux (CHF) in the channels using R134a in a pumped refrigerant loop (PRL). To change orifice size, a dam controlled with a micrometer was placed in front of 31 parallel microchannels. Each channel had a hydraulic diameter of 0.235 mm and a length of 1.33 cm. For steady state two-phase conditions, mass fluxes of 300 kg m-2 s-1 and 600 kg m-2 s-1were investigated. For orifice sizes with a hydraulic diameter to unrestricted hydraulic diameter (Dh:Dh,ur) ratio less than 35 percent, oscillations were reduced and wall temperatures fell up to 1.5 °C. Critical heat flux data were obtained for 7 orifice sizes with mass fluxes from 186 kg m-2 s-1 to 847 kg m-2 s-1. For all mass fluxes and inlet conditions tested, CHF values for a Dh:Dh,ur ratio of 1.8 percent became increasingly lower (up to 37 W cm-2 less) than those obtained with larger orifices. An optimum orifice size with Dh:Dh,ur of 35 percent emerged, offering up to 5 W cm-2 increase in CHF over unrestricted conditions at the highest mass flux tested, 847 kg m-2 s-1. These improvements in cooling ability with inlet orifices in place under both steady-state and impending CHF conditions are modest, leading to the conclusion that inlet orifices are only mildly effective at improving heat transfer coefficients. Stability of the PRL used for experimentation was also studied and improved. A vapor compression cycle's (VCC) proportional, integral, and derivative controller was found to adversely affect stability within the PRL and cause premature CHF. Replacing the VCC with an ice water heat sink maintained steady pumped loop system pressures and mass flow rates. The ice water heat sink was shown to have energy cost savings over the use of a directly coupled VCC for removing heat from the PRL.
ContributorsOdom, Brent A (Author) / Phelan, Patrick E (Thesis advisor) / Herrmann, Marcus (Committee member) / Trimble, Steve (Committee member) / Tasooji, Amaneh (Committee member) / Holcomb, Don (Committee member) / Arizona State University (Publisher)
Created2012
157140-Thumbnail Image.png
Description
In previous work, the effects of power extraction for onboard electrical equipment and flight control systems were studied to determine which turbine shaft (i.e. high power shaft vs low power shaft) is best suited for power extraction. This thesis will look into an alternative option, a three-spool design with a

In previous work, the effects of power extraction for onboard electrical equipment and flight control systems were studied to determine which turbine shaft (i.e. high power shaft vs low power shaft) is best suited for power extraction. This thesis will look into an alternative option, a three-spool design with a high-pressure turbine, low-pressure turbine, and a turbine dedicated to driving the fan. One of the three-spool turbines is designed to be a vaneless counter-rotating turbine. The off-design performance of this new design will be compared to the traditional two-spool design to determine if the additional spool is a practical alternative to current designs for high shaft horsepower extraction requirements. Upon analysis, this thesis has shown that a three-spool engine with a vaneless counter-rotating stage has worse performance characteristics than traditional two-spool designs for UAV systems.
ContributorsBurgett, Luke Michael (Author) / Takahashi, Timothy (Thesis advisor) / Dahm, Werner (Committee member) / Trimble, Steve (Committee member) / Arizona State University (Publisher)
Created2019