Matching Items (3)
Filtering by

Clear all filters

151866-Thumbnail Image.png
Description
This dissertation investigates spatial and temporal changes in land cover and plant species distributions on Cyprus in the past, present and future (1973-2070). Landsat image analysis supports inference of land cover changes following the political division of the island of Cyprus in 1974. Urban growth in Nicosia, Larnaka and Limasol,

This dissertation investigates spatial and temporal changes in land cover and plant species distributions on Cyprus in the past, present and future (1973-2070). Landsat image analysis supports inference of land cover changes following the political division of the island of Cyprus in 1974. Urban growth in Nicosia, Larnaka and Limasol, as well as increased development along the southern coastline, is clearly evident between 1973 and 2011. Forests of the Troodos and Kyrenia Ranges remain relatively stable, with transitions occurring most frequently between agricultural land covers and shrub/herbaceous land covers. Vegetation models were constructed for twenty-two plant species of Cyprus using Maxent to predict potentially suitable areas of occurrence. Modern vegetation models were constructed from presence-only data collected by field surveys conducted between 2008 and 2011. These models provide a baseline for the assessment of potential species distributions under two climate change scenarios (A1b and A2) for the years 2030, 2050, and 2070. Climate change in Cyprus is likely to influence habitat availability, particularly for high elevation species as the relatively low elevation mountain ranges and small latitudinal range prevent species from shifting to areas of suitable environmental conditions. The loss of suitable habitat for some species may allow the introduction of non-native plant species or the expansion of generalists currently excluded from these areas. Results from future projections indicate the loss of suitable areas for most species by the year 2030 under both climate regimes and all four endemic species (Cedrus brevifolia, Helianthemum obtusifolium, Pterocephalus multiflorus, and Quercus alnifolia) are predicted to lose all suitable environments as soon as 2030. As striking exceptions Prunus dulcis (almond), Ficus carica (fig), Punica granatum (pomegranate) and Olea europaea (olive), which occur as both wild varieties and orchard cultigens, will expand under both scenarios. Land cover and species distribution maps are evaluated in concert to create a more detailed interpretation of the Cypriot landscape and to discuss the potential implications of climate change for land cover and plant species distributions.
ContributorsRidder, Elizabeth (Author) / Fall, Patricia L. (Thesis advisor) / Myint, Soe W (Committee member) / Hirt, Paul W (Committee member) / Arizona State University (Publisher)
Created2013
150070-Thumbnail Image.png
Description
This dissertation creates models of past potential vegetation in the Southern Levant during most of the Holocene, from the beginnings of farming through the rise of urbanized civilization (12 to 2.5 ka BP). The time scale encompasses the rise and collapse of the earliest agrarian civilizations in this region. The

This dissertation creates models of past potential vegetation in the Southern Levant during most of the Holocene, from the beginnings of farming through the rise of urbanized civilization (12 to 2.5 ka BP). The time scale encompasses the rise and collapse of the earliest agrarian civilizations in this region. The archaeological record suggests that increases in social complexity were linked to climatic episodes (e.g., favorable climatic conditions coincide with intervals of prosperity or marked social development such as the Neolithic Revolution ca. 11.5 ka BP, the Secondary Products Revolution ca. 6 ka BP, and the Middle Bronze Age ca. 4 ka BP). The opposite can be said about periods of climatic deterioration, when settled villages were abandoned as the inhabitants returned to nomadic or semi nomadic lifestyles (e.g., abandonment of the largest Neolithic farming towns after 8 ka BP and collapse of Bronze Age towns and cities after 3.5 ka BP during the Late Bronze Age). This study develops chronologically refined models of past vegetation from 12 to 2.5 ka BP, at 500 year intervals, using GIS, remote sensing and statistical modeling tools (MAXENT) that derive from species distribution modeling. Plants are sensitive to alterations in their environment and respond accordingly. Because of this, they are valuable indicators of landscape change. An extensive database of historical and field gathered observations was created. Using this database as well as environmental variables that include temperature and precipitation surfaces for the whole study period (also at 500 year intervals), the potential vegetation of the region was modeled. Through this means, a continuous chronology of potential vegetation of the Southern Levantwas built. The produced paleo-vegetation models generally agree with the proxy records. They indicate a gradual decline of forests and expansion of steppe and desert throughout the Holocene, interrupted briefly during the Mid Holocene (ca. 4 ka BP, Middle Bronze Age). They also suggest that during the Early Holocene, forest areas were extensive, spreading into the Northern Negev. The two remaining forested areas in the Northern and Southern Plateau Region in Jordan were also connected during this time. The models also show general agreement with the major cultural developments, with forested areas either expanding or remaining stable during prosperous periods (e.g., Pre Pottery Neolithic and Middle Bronze Age), and significantly contracting during moments of instability (e.g., Late Bronze Age).
ContributorsSoto-Berelov, Mariela (Author) / Fall, Patricia L. (Thesis advisor) / Myint, Soe (Committee member) / Turner, Billie L (Committee member) / Falconer, Steven (Committee member) / Arizona State University (Publisher)
Created2011
155217-Thumbnail Image.png
Description
Historians typically view the postwar suburban metropolis from one of two vantages: from the vantage of urban capital as it flowed out of central cities into new automobile suburbs, where a new suburban culture emerged and flourished after 1945, or from the vantage of central cities, which become progressively hollowed

Historians typically view the postwar suburban metropolis from one of two vantages: from the vantage of urban capital as it flowed out of central cities into new automobile suburbs, where a new suburban culture emerged and flourished after 1945, or from the vantage of central cities, which become progressively hollowed out, leaving behind badly deteriorated inner-city services and facilities. Rarely, however, do historians view the postwar suburban metropolis from the vantage of peripheral small towns and rural countrysides. This study looks at the “metropolitan revolution” from the outside in, as the metropolis approached and then absorbed a landscape of farms and ranches centered on a small farm-service town. As a case study, it focuses on Tempe, Arizona, a town and rural countryside eight miles east of Phoenix.

During the postwar period, Tempe became part of the Phoenix metropolitan area. Agricultural production in Tempe yielded to suburban development, as a producer-oriented landscape of farms and ranches became a consumer-oriented landscape of residential subdivisions and university buildings. Intangible goods such as higher education eclipsed tangible goods such as grain, dairy, and cotton. Single-family houses supplanted farmland; shopping centers with parking lots undermined main street businesses; irrigation water became domestic water; and International-style university buildings displaced vernacular neighborhoods rooted in the early history of the settlement. In Tempe, the rural agricultural landscape gave way to a suburban landscape. But in important ways, the former shaped the latter, as the suburban metropolis inherited the underlying form and spatial relationships of farms and ranches.
ContributorsHallam, Nathan (Author) / Vandermeer, Philip (Thesis advisor) / Smith, Karen (Committee member) / Thompson, Victoria (Committee member) / Arizona State University (Publisher)
Created2016