Matching Items (2)
156576-Thumbnail Image.png
Description
The primary objective in time series analysis is forecasting. Raw data often exhibits nonstationary behavior: trends, seasonal cycles, and heteroskedasticity. After data is transformed to a weakly stationary process, autoregressive moving average (ARMA) models may capture the remaining temporal dynamics to improve forecasting. Estimation of ARMA can be performed

The primary objective in time series analysis is forecasting. Raw data often exhibits nonstationary behavior: trends, seasonal cycles, and heteroskedasticity. After data is transformed to a weakly stationary process, autoregressive moving average (ARMA) models may capture the remaining temporal dynamics to improve forecasting. Estimation of ARMA can be performed through regressing current values on previous realizations and proxy innovations. The classic paradigm fails when dynamics are nonlinear; in this case, parametric, regime-switching specifications model changes in level, ARMA dynamics, and volatility, using a finite number of latent states. If the states can be identified using past endogenous or exogenous information, a threshold autoregressive (TAR) or logistic smooth transition autoregressive (LSTAR) model may simplify complex nonlinear associations to conditional weakly stationary processes. For ARMA, TAR, and STAR, order parameters quantify the extent past information is associated with the future. Unfortunately, even if model orders are known a priori, the possibility of over-fitting can lead to sub-optimal forecasting performance. By intentionally overestimating these orders, a linear representation of the full model is exploited and Bayesian regularization can be used to achieve sparsity. Global-local shrinkage priors for AR, MA, and exogenous coefficients are adopted to pull posterior means toward 0 without over-shrinking relevant effects. This dissertation introduces, evaluates, and compares Bayesian techniques that automatically perform model selection and coefficient estimation of ARMA, TAR, and STAR models. Multiple Monte Carlo experiments illustrate the accuracy of these methods in finding the "true" data generating process. Practical applications demonstrate their efficacy in forecasting.
ContributorsGiacomazzo, Mario (Author) / Kamarianakis, Yiannis (Thesis advisor) / Reiser, Mark R. (Committee member) / McCulloch, Robert (Committee member) / Hahn, Richard (Committee member) / Fricks, John (Committee member) / Arizona State University (Publisher)
Created2018
157682-Thumbnail Image.png
Description
Time series forecasting is the prediction of future data after analyzing the past data for temporal trends. This work investigates two fields of time series forecasting in the form of Stock Data Prediction and the Opioid Incident Prediction. In this thesis, the Stock Data Prediction Problem investigates methods which could

Time series forecasting is the prediction of future data after analyzing the past data for temporal trends. This work investigates two fields of time series forecasting in the form of Stock Data Prediction and the Opioid Incident Prediction. In this thesis, the Stock Data Prediction Problem investigates methods which could predict the trends in the NYSE and NASDAQ stock markets for ten different companies, nine of which are part of the Dow Jones Industrial Average (DJIA). A novel deep learning model which uses a Generative Adversarial Network (GAN) is used to predict future data and the results are compared with the existing regression techniques like Linear, Huber, and Ridge regression and neural network models such as Long-Short Term Memory (LSTMs) models.

In this thesis, the Opioid Incident Prediction Problem investigates methods which could predict the location of future opioid overdose incidences using the past opioid overdose incidences data. A similar deep learning model is used to predict the location of the future overdose incidences given the two datasets of the past incidences (Connecticut and Cincinnati Opioid incidence datasets) and compared with the existing neural network models such as Convolution LSTMs, Attention-based Convolution LSTMs, and Encoder-Decoder frameworks. Experimental results on the above-mentioned datasets for both the problems show the superiority of the proposed architectures over the standard statistical models.
ContributorsThomas, Kevin, M.S (Author) / Sen, Arunabha (Thesis advisor) / Davulcu, Hasan (Committee member) / Banerjee, Ayan (Committee member) / Arizona State University (Publisher)
Created2019