Matching Items (5)
Filtering by

Clear all filters

152753-Thumbnail Image.png
Description
Air pollution is a serious problem in most urban areas around the world, which has a number of negative ecological and human health impacts. As a result, it's vitally important to detect and characterize air pollutants to protect the health of the urban environment and our citizens. An important early

Air pollution is a serious problem in most urban areas around the world, which has a number of negative ecological and human health impacts. As a result, it's vitally important to detect and characterize air pollutants to protect the health of the urban environment and our citizens. An important early step in this process is ensuring that the air pollution monitoring network is properly designed to capture the patterns of pollution and that all social demographics in the urban population are represented. An important aspect in characterizing air pollution patterns is scale in space and time which, along with pattern and process relationships, is a key subject in the field of landscape ecology. Thus, using multiple landscape ecological methods, this dissertation research begins by characterizing and quantifying the multi-scalar patterns of ozone (O3) and particulate matter (PM10) in the Phoenix, Arizona, metropolitan region. Results showed that pollution patterns are scale-dependent, O3 is a regionally-scaled pollutant at longer temporal scales, and PM10 is a locally-scaled pollutant with patterns sensitive to season. Next, this dissertation examines the monitoring network within Maricopa County. Using a novel multiscale indicator-based approach, the adequacy of the network was quantified by integrating inputs from various academic and government stakeholders. Furthermore, deficiencies were spatially defined and recommendations were made on how to strengthen the design of the network. A sustainability ranking system also provided new insight into the strengths and weaknesses of the network. Lastly, the study addresses the question of whether distinct social groups were experiencing inequitable exposure to pollutants - a key issue of distributive environmental injustice. A novel interdisciplinary method using multi-scalar ambient pollution data and hierarchical multiple regression models revealed environmental inequities between air pollutants and race, ethnicity, age, and socioeconomic classes. The results indicate that changing the scale of the analysis can change the equitable relationship between pollution and demographics. The scientific findings of the scale-dependent relationships among air pollution patterns, network design, and population demographics, brought to light through this study, can help policymakers make informed decisions for protecting the human health and the urban environment in the Phoenix metropolitan region and beyond.
ContributorsPope, Ronald L (Author) / Wu, Jianguo (Thesis advisor) / Boone, Christopher G. (Committee member) / Brazel, Anthony J. (Committee member) / Forzani, Erica S. (Committee member) / Fraser, Matthew P. (Committee member) / Arizona State University (Publisher)
Created2014
158438-Thumbnail Image.png
Description
The science community has made efforts for over a half century to address sustainable development, which gave birth to sustainability science at the turn of the twenty-first century. Along with the development of sustainability science during the past two decades, a landscape sustainability science (LSS) perspective has been emerging.

The science community has made efforts for over a half century to address sustainable development, which gave birth to sustainability science at the turn of the twenty-first century. Along with the development of sustainability science during the past two decades, a landscape sustainability science (LSS) perspective has been emerging. As interests in LSS continue to grow rapidly, scholars are wondering what LSS is about and how LSS fits into sustainability science, while practitioners are asking how LSS actually contributes to sustainability in the real world. To help address these questions, this dissertation research aims to explore the currently underused problem-driven, diagnostic approach to enhancing landscape sustainability through an empirical example of urbanization-associated farmland loss (UAFL). Based mainly on multimethod analysis of bibliographic information, the dissertation explores conceptual issues such as how sustainability science differs from conventional sustainable development research, and how the past, present, and future research needs of LSS evolve. It also includes two empirical studies diagnosing the issue of urban expansion and the related food security concern in the context of China, and proposes a different problem framing for farmland preservation such that stakeholders can be more effectively mobilized. The most important findings are: (1) Sustainability science is not “old wine in a new bottle,” and in particular, is featured by its complex human-environment systems perspective and value-laden transdisciplinary perspective. (2) LSS has become a vibrant emerging field since 2004-2006 with over three-decade’s intellectual accumulation deeply rooted in landscape ecology, yet LSS has to further embrace the two featured perspectives of sustainability science and to conduct more problem-driven, diagnostic studies of concrete landscape-relevant sustainability concerns. (3) Farmland preservationists’ existing problem framing of UAFL is inappropriate for its invalid causal attribution (i.e., urban expansion is responsible for farmland loss; farmland loss is responsible for decreasing grain production; and decreasing grain production instead of increasing grain demand is responsible for grain self-insufficiency); the real problem with UAFL is social injustice due to collective action dilemma in preserving farmland for regional and global food sufficiency. The present research provides broad implications for landscape scientists, the sustainability research community, and UAFL stakeholders.
ContributorsZhou, Bingbing (Author) / Wu, Jianguo (Thesis advisor) / Aggarwal, Rimjhim (Committee member) / Anderies, John Marty (Committee member) / Janssen, Marcus Alexander (Committee member) / Turner II, Billie Lee (Committee member) / Arizona State University (Publisher)
Created2020
161303-Thumbnail Image.png
Description
Ecological phenomena act on various spatial and temporal scales. To understand what causes animal populations to build and decline depends heavily on abiotic and biotic conditions which vary spatiotemporally throughout the biosphere. One excel- lent example of animal populations dynamics is with locusts. Locusts are a subset of grasshoppers that

Ecological phenomena act on various spatial and temporal scales. To understand what causes animal populations to build and decline depends heavily on abiotic and biotic conditions which vary spatiotemporally throughout the biosphere. One excel- lent example of animal populations dynamics is with locusts. Locusts are a subset of grasshoppers that undergo periodical upsurges called swarms. Locust swarms have plagued human history by posing significant threats to global food security. For example, the 2003-2005 desert locust (Schistocerca gregaria) swarm destroyed 80%-100% of crops in the impacted areas and cost over US $500 million in mitigation as estimated by the Food and Agriculture Organization of the United Nations. An integrative multi-scale approach must be taken to effectively predict and manage locust swarms. For my dissertation, I looked at the ecological causes of locust swarms on multiple scales using both the Australian plague locust (Chortoicetes terminifera) and desert locust as focal species. At the microhabitat scale, I demonstrated how shifts in the nutritional landscape can influence locust gregarization. At the field level, I show that locust populations avoid woody vegetation likely due to the interactive effect of plant nutrients, temperature, and predators. At the landscape level, I show that adaptations to available nutrient variation depends on life history strategies, such as migratory capabilities. A strong metapopulation structure may aid in the persistence of locust species at larger spatial scales. Lastly, at the continental scale I show the relationship between preceding vegetation and locust outbreaks vary considerably between regions and seasons. However, regardless of this variation, the spatiotemporal structure of geographic zone > bioregion > season holds constant in two locust species. Understanding the biologically relevant spatial and temporal scales from individual gregarization (e.g. micro-habitat) to massive swarms (e.g. landscape to continental) is important to accurately predicting where and when outbreaks will happen. Overall, my research highlights that understanding animal population dynamics requires a multi-scale and trans-disciplinary approach. Into the future, integrating locust re- search from organismal to landscape levels can aid in forecasting where and when locust outbreaks occur.
ContributorsLawton, Douglas (Author) / Cease, Arianne J (Thesis advisor) / Waters, Cathy (Thesis advisor) / Throop, Heather (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2021