Matching Items (4)
Filtering by

Clear all filters

156442-Thumbnail Image.png
Description
This dissertation research describes the hunting behavior of early modern humans through the analysis of vertebrate faunal remains from Contrebandiers Cave, Morocco. Contrebandiers Cave is located in the town of Témara and is roughly 250 meters from the current shoreline of the Atlantic Ocean. The cave was excavated in the

This dissertation research describes the hunting behavior of early modern humans through the analysis of vertebrate faunal remains from Contrebandiers Cave, Morocco. Contrebandiers Cave is located in the town of Témara and is roughly 250 meters from the current shoreline of the Atlantic Ocean. The cave was excavated in the 1950s and 1970s by l’Abbé Roche, and again starting in 2007 by Dibble and El Hajraoui with total station plotting of finds. Contrebandiers Cave contains Middle Stone Age (MSA) deposits dated to Marine Isotope Stages (MIS) 5e, 5d and 5c, ~120,000 to ~96,000 years ago. The Later Stone Age (LSA) deposits are dated to MIS 2, ~20,000 years ago. The entirety of the ~12,000 vertebrate faunal remains from Dibble and El Hajraoui’s excavation were analyzed for taxonomic and taphonomic identification.

A total of 67 vertebrate taxa were identified and include ungulates, carnivores, lagomorphs, birds, tortoises, snakes and fish. The faunal remains from Contrebandiers Cave preserve surface modification that indicates both humans and carnivores acted as agents of prey accumulation. Skeletal element representation and surface modification of ungulate remains suggest that humans had primary access to small, medium and large-bodied prey. In the MSA levels, carnivore skeletal remains preserve surface modification that is interpreted as being indicative of behavior associated with skinning for fur removal.

The vertebrate faunal remains from MIS 5e and 5d indicate that humans were hunting grazers and mixed feeders from open habitats and suids from mixed habitats. The faunal remains from MIS 5c indicate that humans focused less on suids and more on mixed feeders from open habitats. The vertebrate faunal remains from MIS 2 reveal humans hunting grazers from dry, open habitats. This research provides a description of human hunting behavior in North Africa, and contributes to our understanding of early modern human behavior prior to dispersal out of Africa.
ContributorsHallett, Emily Yuko (Author) / Marean, Curtis W (Thesis advisor) / Reed, Kaye E (Committee member) / Dibble, Harold L. (Committee member) / Arizona State University (Publisher)
Created2018
154193-Thumbnail Image.png
Description
The Middle Stone Age archaeological record from the south coast of South Africa contains significant evidence for early modern human behavior. The south coast is within the modern Greater Cape Floristic Region (GCFR), which in the present-day encompasses the entirety of South Africa’s Winter Rainfall Zone (WRZ) and contains unique

The Middle Stone Age archaeological record from the south coast of South Africa contains significant evidence for early modern human behavior. The south coast is within the modern Greater Cape Floristic Region (GCFR), which in the present-day encompasses the entirety of South Africa’s Winter Rainfall Zone (WRZ) and contains unique vegetation elements that have been hypothesized to be of high utility to hunter-gatherer populations. Extant paleoenvironmental proxy records for the Pleistocene in the region often indicate evidence for more open environments during the past than occur in the area in the present-day, while climate models suggest glacial presence of the WRZ that would support maintenance of C3-predominant GCFR vegetation.

These paleoenvironmental proxies sample past environments at geographic scales that are often regional. The GCFR flora is hyper-diverse, and glacial climate change-driven impacts on local vegetation could have been highly variable over relatively small geographic scales. Proxy records that are circumscribed in their geographic scale are thus key to our understanding of ancient environments at particular MSA archaeological localities.

Micromammal fossil teeth are now recognized as an abundant potential reservoir of paleoenvironmental proxy data at an extremely local scale. This study analyzed modern micromammal teeth obtained from raptor pellets at three locations on the south coast. Stable carbon isotope analysis indicates that the modern micromammals from the taxa sampled consume a wide range of δ13Cplant on the landscape when it is available, and thus stable carbon isotope analysis of micromammal teeth should act as a proxy for the range of available δ13Cdiet in a circumscribed area of vegetation.

Micromammal stable carbon isotope data obtained from specimens from one of the few well-dated MIS6-MIS5 sequences in the region (Pinnacle Point sites 13B, 30, and 9C). δ13Cenamel values for the taxa sampled indicate diets that are primarily C3, and there is almost no evidence for a dietary C4 grass component in any of the sampled specimens. This indicates that, at a minimum, pockets of C3 vegetation associated with the GCFR were likely available to hunter-gatherers at Pinnacle Point throughout the Middle and Late Pleistocene.
ContributorsWilliams, Hope Marie (Author) / Marean, Curtis W (Thesis advisor) / Knudson, Kelly J. (Thesis advisor) / Reed, Kaye (Committee member) / Arizona State University (Publisher)
Created2015
154204-Thumbnail Image.png
Description
Despite nearly five decades of archaeological research in the Romanian Carpathian basin and adjacent areas, how human foragers organized their stone artifact technologies under varying environmental conditions remains poorly understood.

Some broad generalizations have been made; most work in the region is concerned primarily with descriptive and definitional issues rather

Despite nearly five decades of archaeological research in the Romanian Carpathian basin and adjacent areas, how human foragers organized their stone artifact technologies under varying environmental conditions remains poorly understood.

Some broad generalizations have been made; most work in the region is concerned primarily with descriptive and definitional issues rather than efforts to explain past human behavior or human-environmental interactions. Modern research directed towards understanding human adaptation to different environments remains in its infancy. Grounded in the powerful conceptual framework of evolutionary ecology and utilizing recent methodological advances, this work has shown that shifts in land-use strategies changes the opportunities for social and biological interaction among Late Pleistocene hominins in western Eurasia, bringing with it a plethora of important consequences for cultural and biological evolution.

I employ, in my Dissertation, theoretical and methodological advances derived from human behavioral ecology (HBE) and lithic technology organization to show how variability in lithic technology can explain differences in technoeconomic choices and land-use strategies of Late Pleistocene foragers in Romanian Carpathians Basin and adjacent areas. Set against the backdrop of paleoenvironmental change, the principal questions I addressed are whether or not technological variation at the beginning of the Upper Paleolithic can account for fundamental changes at its end.

The analysis of the Middle and Upper Paleolithic strata, from six archaeological sites, shows that the lithic industries were different not because of biocultural differences in technological organization, landuse strategies, and organizational flexibility. Instead the evidence suggests that technoeconomic strategies, the intensity of artifact curation and how foragers used the land appear to have been more closely related to changing environmental conditions, task-specific activities, and duration of occupation. This agrees well with the results of studies conducted in other areas and with those predicted from theoretically-derived models based on evolutionary ecology. My results lead to the conclusion that human landuse effectively changes the environment of selection for hominins and their lithic technologies, an important component of the interface between humans and the natural world. Foragers move across the landscape in comparable ways in very different ecological settings, cross-cutting both biological morphotypes and prehistorian-defined analytical units.
ContributorsPopescu, Gabriel Marius (Author) / Barton, Charles Michael (Thesis advisor) / Clark, Geoffrey A. (Thesis advisor) / Marean, Curtis W (Committee member) / Arizona State University (Publisher)
Created2015