Matching Items (3)
Filtering by

Clear all filters

Description

Phoenix is the sixth most populated city in the United States and the 12th largest metropolitan area by population, with about 4.4 million people. As the region continues to grow, the demand for housing and jobs within the metropolitan area is projected to rise under uncertain climate conditions.

Undergraduate and graduate

Phoenix is the sixth most populated city in the United States and the 12th largest metropolitan area by population, with about 4.4 million people. As the region continues to grow, the demand for housing and jobs within the metropolitan area is projected to rise under uncertain climate conditions.

Undergraduate and graduate students from Engineering, Sustainability, and Urban Planning in ASU’s Urban Infrastructure Anatomy and Sustainable Development course evaluated the water, energy, and infrastructure changes that result from smart growth in Phoenix, Arizona. The Maricopa Association of Government's Sustainable Transportation and Land Use Integration Study identified a market for 485,000 residential dwelling units in the urban core. Household water and energy use changes, changes in infrastructure needs, and financial and economic savings are assessed along with associated energy use and greenhouse gas emissions.

The course project has produced data on sustainable development in Phoenix and the findings will be made available through ASU’s Urban Sustainability Lab.

ContributorsNahlik, Matthew (Author) / Chester, Mikhail Vin (Author) / Andrade, Luis (Author) / Archer, Melissa (Author) / Barnes, Elizabeth (Author) / Beguelin, Maria (Author) / Bonilla, Luis (Author) / Bubenheim, Stephanie (Author) / Burillo, Daniel (Author) / Cano, Alex (Author) / Guiley, Keith (Author) / Hamad, Moayyad (Author) / Heck, John (Author) / Helble, Parker (Author) / Hsu, Will (Author) / Jensen, Tate (Author) / Kannappan, Babu (Author) / Kirtley, Kelley (Author) / LaGrou, Nick (Author) / Loeber, Jessica (Author) / Mann, Chelsea (Author) / Monk, Shawn (Author) / Paniagua, Jaime (Author) / Prasad, Saransh (Author) / Stafford, Nicholas (Author) / Unger, Scott (Author) / Volo, Tom (Author) / Watson, Mathew (Author) / Woodruff, Abbie (Author) / Arizona State University. School of Sustainable Engineering and the Built Environment (Contributor) / Arizona State University. Center for Earth Systems Engineering and Management (Contributor)
Description

This LCA used data from a previous LCA done by Chester and Horvath (2012) on the proposed California High Speed Rail, and furthered the LCA to look into potential changes that can be made to the proposed CAHSR to be more resilient to climate change. This LCA focused on the

This LCA used data from a previous LCA done by Chester and Horvath (2012) on the proposed California High Speed Rail, and furthered the LCA to look into potential changes that can be made to the proposed CAHSR to be more resilient to climate change. This LCA focused on the energy, cost, and GHG emissions associated with raising the track, adding fly ash to the concrete mixture in place of a percentage of cement, and running the HSR on solar electricity rather than the current electricity mix. Data was collected from a variety of sources including other LCAs, research studies, feasibility studies, and project information from companies, agencies, and researchers in order to determine what the cost, energy requirements, and associated GHG emissions would be for each of these changes. This data was then used to calculate results of cost, energy, and GHG emissions for the three different changes. The results show that the greatest source of cost is the raised track (Design/Construction Phase), and the greatest source of GHG emissions is the concrete (also Design/Construction Phase).

Created2014-06-13
Description

In the spring of 2016, the City of Apache Junction partnered with the School of Geographical Sciences and Urban Planning at Arizona State University on three forward-thinking plans for development in Apache Junction. Graduate students in the Urban and Environmental Planning program worked alongside City staff, elected officials and the

In the spring of 2016, the City of Apache Junction partnered with the School of Geographical Sciences and Urban Planning at Arizona State University on three forward-thinking plans for development in Apache Junction. Graduate students in the Urban and Environmental Planning program worked alongside City staff, elected officials and the public to identify opportunities and visions for:
       1. Multi-modal access and connectivity improvements for City streets and open space.
       2. Downtown development.
       3. A master-planned community on state land south of the U.S. 60.

The following sections of the report present Apache Junction’s unique characteristics, current resident demographics, development needs and implementation strategies for each project:
       1. Community Profile
       2. Trail Connectivity Master Plan
       3. Downtown Visioning
       4. State Land Visioning

The Trail Connectivity Master Plan optimizes existing trails and wide road shoulders to improve multi-modal connections across the city. The proposed connections emphasize access to important recreation, education and other community facilities for pedestrians, equestrians and bicycles. Trail and lane designs recommend vegetated buffers, wherever possible, to improve traveler safety and comfort. The proposals also increase residents’ interaction with open space along urban-rural trails and park linkages to preserve opportunities to engage with nature. The objectives of the report are accomplished through three goals: connectivity, safety improvements and open space preservation.

Downtown Visioning builds on a large body of conceptual design work for Apache Junction’s downtown area along Idaho Road and Apache Trail. This report identifies three goals: to establish a town center, to reestablish the grid systems while maintaining a view of the Superstition Mountains, and to create an identity and sense of place for the downtown.

State Land Visioning addresses a tract of land, approximately 25 square miles in area, south of the U.S. 60. The main objective is to facilitate growth and proper development in accordance with existing goals in Apache Junction’s General Plan. This is accomplished through three goals:
       1. Develop a foundation for the creation of an economic corridor along US-60 through
           preliminary market research and land use planning.
       2. Create multi-modal connections between existing development north of US-60 and
           future recreational space northeast of US-60.
       3. Maintain a large ratio of open space to developed area that encompasses existing
           washes and floodplains using a master planned community framework to provide an
           example for future land use planning.