Matching Items (4)

Filtering by

Clear all filters

156331-Thumbnail Image.png

Graph Search as a Feature in Imperative/Procedural Programming Languages

Description

Graph theory is a critical component of computer science and software engineering, with algorithms concerning graph traversal and comprehension powering much of the largest problems in both industry and research. Engineers and researchers often have an accurate view of their

Graph theory is a critical component of computer science and software engineering, with algorithms concerning graph traversal and comprehension powering much of the largest problems in both industry and research. Engineers and researchers often have an accurate view of their target graph, however they struggle to implement a correct, and efficient, search over that graph.

To facilitate rapid, correct, efficient, and intuitive development of graph based solutions we propose a new programming language construct - the search statement. Given a supra-root node, a procedure which determines the children of a given parent node, and optional definitions of the fail-fast acceptance or rejection of a solution, the search statement can conduct a search over any graph or network. Structurally, this statement is modelled after the common switch statement and is put into a largely imperative/procedural context to allow for immediate and intuitive development by most programmers. The Go programming language has been used as a foundation and proof-of-concept of the search statement. A Go compiler is provided which implements this construct.

Contributors

Agent

Created

Date Created
2018

161079-Thumbnail Image.png

Agora: Introducing the Internet’s Opinion to Traditional Stock Analysis and Prediction

Description

This project aims to incorporate the aspect of sentiment analysis into traditional stock analysis to enhance stock rating predictions by applying a reliance on the opinion of various stocks from the Internet. Headlines from eight major news publications and conversations

This project aims to incorporate the aspect of sentiment analysis into traditional stock analysis to enhance stock rating predictions by applying a reliance on the opinion of various stocks from the Internet. Headlines from eight major news publications and conversations from Yahoo! Finance’s “Conversations” feature were parsed through the Valence Aware Dictionary for Sentiment Reasoning (VADER) natural language processing package to determine numerical polarities which represented positivity or negativity for a given stock ticker. These generated polarities were paired with stock metrics typically observed by stock analysts as the feature set for a Logistic Regression machine learning model. The model was trained on roughly 1500 major stocks to determine a binary classification between a “Buy” or “Not Buy” rating for each stock, and the results of the model were inserted into the back-end of the Agora Web UI which emulates search engine behavior specifically for stocks found in NYSE and NASDAQ. The model reported an accuracy of 82.5% and for most major stocks, the model’s prediction correlated with stock analysts’ ratings. Given the volatility of the stock market and the propensity for hive-mind behavior in online forums, the performance of the Logistic Regression model would benefit from incorporating historical stock data and more sources of opinion to balance any subjectivity in the model.

Contributors

Agent

Created

Date Created
2021-12

161223-Thumbnail Image.jpg

SwiftUI vs UIKit: A Case Study on How a Declarative Framework Can Improve Learnability of UI Programming

Description

User interface development on iOS is in a major transitionary state as Apple introduces a declarative and interactive framework called SwiftUI. SwiftUI’s success depends on how well it integrates its new tooling for novice developers. This paper will demonstrate and

User interface development on iOS is in a major transitionary state as Apple introduces a declarative and interactive framework called SwiftUI. SwiftUI’s success depends on how well it integrates its new tooling for novice developers. This paper will demonstrate and discuss where SwiftUI succeeds and fails at carving a new path for user interface development for new developers. This is done by comparisons against its existing imperative UI framework UIKit as well as elaborating on the background of SwiftUI and examples of how SwiftUI works to help developers. The paper will also discuss what exactly led to SwiftUI and how it is currently faring on Apple's latest operating systems. SwiftUI is a framework growing and evolving to serve the needs of 5 very different platforms with code that claims to be simpler to write and easier to deploy. The world of UI programming in iOS has been dominated by a Storyboard canvas for years, but SwiftUI claims to link this graphic-first development process with the code programmers are used to by keeping them side by side in constant sync. This bold move requires interactive programming capable of recompilation on the fly. As this paper will discuss, SwiftUI has garnered a community of developers giving it the main property it needs to succeed: a component library.

Contributors

Agent

Created

Date Created
2021-12

161012-Thumbnail Image.png

Agora: Introducing the Internet's Opinion to Traditional Stock Analysis and Prediction.

Description

This project aims to incorporate the aspect of sentiment analysis into traditional stock analysis to enhance stock rating predictions by applying a reliance on the opinion of various stocks from the Internet. Headlines from eight major news publications and conversations

This project aims to incorporate the aspect of sentiment analysis into traditional stock analysis to enhance stock rating predictions by applying a reliance on the opinion of various stocks from the Internet. Headlines from eight major news publications and conversations from Yahoo! Finance’s “Conversations” feature were parsed through the Valence Aware Dictionary for Sentiment Reasoning (VADER) natural language processing package to determine numerical polarities which represented positivity or negativity for a given stock ticker. These generated polarities were paired with stock metrics typically observed by stock analysts as the feature set for a Logistic Regression machine learning model. The model was trained on roughly 1500 major stocks to determine a binary classification between a “Buy” or “Not Buy” rating for each stock, and the results of the model were inserted into the back-end of the Agora Web UI which emulates search engine behavior specifically for stocks found in NYSE and NASDAQ. The model reported an accuracy of 82.5% and for most major stocks, the model’s prediction correlated with stock analysts’ ratings. Given the volatility of the stock market and the propensity for hive-mind behavior in online forums, the performance of the Logistic Regression model would benefit from incorporating historical stock data and more sources of opinion to balance any subjectivity in the model.

Contributors

Agent

Created

Date Created
2021-12