Matching Items (10)
152808-Thumbnail Image.png
Description
The earliest Eocene marked the appearance of the first North American euprimates (adapids, omomyids). Despite the fact that leading hypotheses assert that traits involved in food acquisition underlie euprimate origination and early diversification, the precise role that dietary competition played in establishing euprimates as successful members of mammalian communities is

The earliest Eocene marked the appearance of the first North American euprimates (adapids, omomyids). Despite the fact that leading hypotheses assert that traits involved in food acquisition underlie euprimate origination and early diversification, the precise role that dietary competition played in establishing euprimates as successful members of mammalian communities is unclear. This is because the degree of niche overlap between euprimates and all likely mammalian dietary competitors ("the euprimate competitive guild") is unknown. This research determined which of three major competition hypotheses - non-competition, strong competition, and weak competition - characterized the late Paleocene-early Eocene euprimate competitive guild. Each of these hypotheses is defined by a unique temporal pattern of niche overlap between euprimates and their non-euprimate competitors, allowing an evaluation of the nature of dietary competitive interactions surrounding the earliest euprimates in North America. Dietary niches were reconstructed for taxa within the fossil euprimate competitive guild using molar morphological measures determined to discriminate dietary regimes in two extant mammalian guilds. The degree of dietary niche separation among taxa was then evaluated across a series of fossil samples from the Bighorn Basin, Wyoming just prior to, during, and after euprimate origination. Statistical overlap between each pair of euprimate and non-euprimate dietary niches was determined using modified multivariate pairwise comparisons using distances in a multidimensional principal component "niche" space. Results indicate that euprimate origination and diversification in North America was generally characterized by the absence of dietary competition. This lack of competition with non-euprimates is consistent with an increase in the abundance and diversity of euprimates during the early Eocene, signifying that the "success" of euprimates may not be the result of direct biotic interactions between euprimates and other mammals. An examination of the euprimate dietary niche itself determined that adapids and omomyids occupied distinct niches and did not engage in dietary competition during the early Eocene. Furthermore, changes in euprimate dietary niche size over time parallel major climatic shifts. Reconstructing how both biotic and abiotic mechanisms affected Eocene euprimates has the potential to enhance our understanding of these influences on modern primate communities.
ContributorsStroik, Laura (Author) / Schwart, Gary T (Thesis advisor) / Reed, Kaye E (Committee member) / Campisano, Christopher J (Committee member) / Gunnell, Gregg F. (Committee member) / Arizona State University (Publisher)
Created2014
156876-Thumbnail Image.png
Description
Climate and environmental forcing are widely accepted to be important drivers of evolutionary and ecological change in mammal communities over geologic time scales. This paradigm has been particularly influential in studies of the eastern African late Cenozoic fossil record, in which aridification, increasing seasonality, and C4 grassland expansion are seen

Climate and environmental forcing are widely accepted to be important drivers of evolutionary and ecological change in mammal communities over geologic time scales. This paradigm has been particularly influential in studies of the eastern African late Cenozoic fossil record, in which aridification, increasing seasonality, and C4 grassland expansion are seen as having shaped the major patterns of human and faunal evolution. Despite the ubiquity of studies linking climate and environmental forcing to evolutionary and ecological shifts in the mammalian fossil record, many central components of this paradigm remain untested or poorly developed. To fill this gap, this dissertation employs biogeographical and macroecological analyses of present-day African mammal communities as a lens for understanding how abiotic change may have shaped community turnover and structure in the eastern African Plio-Pleistocene. Three dissertation papers address: 1) the role of ecological niche breadth in shaping divergent patterns of macroevolutionary turnover across clades; 2) the effect of climatic and environmental gradients on community assembly; 3) the relative influence of paleo- versus present-day climates in structuring contemporary patterns of community diversity. Results of these papers call into question many tenets of current theory, particularly: 1) that niche breadth differences (and, by extension, their influence on allopatric speciation) are important drivers of macroevolution, 2) that climate is more important than biotic interactions in community assembly, and 3) that communities today are in equilibrium with present-day climates. These findings highlight the need to critically reevaluate the role and scale-dependence of climate in mammal evolution and community ecology and to carefully consider potential time lags and disequilibrium dynamics in the fossil record.
ContributorsRowan, John (Author) / Reed, Kaye E (Thesis advisor) / Campisano, Christopher J (Committee member) / Franklin, Janet (Committee member) / Marean, Curtis W (Committee member) / Arizona State University (Publisher)
Created2018
156891-Thumbnail Image.png
Description
Providing an environmental context to early hominins is as important as describing the hominin fossils themselves, because evolutionary processes are tightly linked to everchanging ecosystems that vary across space and through time. An optimal understanding of ecosystems changes is critical to formulate and test hypotheses regarding human evolution and adaptation.

Providing an environmental context to early hominins is as important as describing the hominin fossils themselves, because evolutionary processes are tightly linked to everchanging ecosystems that vary across space and through time. An optimal understanding of ecosystems changes is critical to formulate and test hypotheses regarding human evolution and adaptation. Fortunately, the fossil record has yielded abundant remains of mammals which can be used to explore the possible causal relationships between environmental change and mammal – including hominin –evolution. Although many studies have already been conducted on this topic, most of them are framed at large spatial and temporal scales. Instead, this dissertation focuses on the evolution and paleoecology of only one group of mammals (the Suidae) in a specific geographical area (lower Awash Valley in Ethiopia) and within a constrained time frame (3.8–2.6 Ma). Three dissertation papers address: 1) changes in suid taxonomic composition in relation to Late Pliocene faunal turnover ~2.8 Ma in the Lee-Adoyta basin, Ledi-Geraru; 2) comparisons of suid diets from Hadar (~3.45–2.95 Ma) with respect to those of Kanapoi (~4.1 Ma, West Turkana, Kenya); 3) the dietary ecology of the suids from Woranso-Mille (~3.8–3.2 Ma). Results of these papers show that 1) after ~2.8 Ma there is a replacement of suid species that is coupled with low relative abundance of suids. This is compatible with more open and/or arid environments at this time; 2) suid dietary breadth was broader in Hadar than in Kanapoi, but this is mostly driven by the dietary niche space occupied by Kolpochoerus in Hadar, a suid genus absent from Kanapoi; 3) suid diets vary both temporally and geographically within the lower Awash Valley. Kolpochoerus incorporates more C4 resources (e.g., grasses) in its diet after ~3.5 Ma and in general, suids after ~3.5 Ma in Woranso-Mille had C4-enriched diets in comparison with those from nearby Hadar and Dikika. Presumably, the changes in suid communities (relative abundance and taxonomic composition) and dietary shifts observed in suids were triggered by climatic and habitat changes that also contributed to shape the behavioural and morphological evolution of early hominins.
ContributorsAguilar Lazagabaster, Ignacio (Author) / Reed, Kaye E (Thesis advisor) / Kimbel, William H. (Committee member) / Ungar, Peter S. (Committee member) / Arizona State University (Publisher)
Created2018
157082-Thumbnail Image.png
Description
The recent emergence of global ‘megafires’ has made it imperative to better understand the role of humans in altering the size, distribution, and seasonality of fires. The dynamic relationship between humans and fire is not a recent phenomenon; rather, fire has deep roots in our biological and cultural evolution. Because

The recent emergence of global ‘megafires’ has made it imperative to better understand the role of humans in altering the size, distribution, and seasonality of fires. The dynamic relationship between humans and fire is not a recent phenomenon; rather, fire has deep roots in our biological and cultural evolution. Because of its long-term perspective, archaeology is uniquely positioned to investigate the social and ecological drivers behind anthropogenic fire. However, the field faces challenges in creating solution-oriented research for managing fire in the future. In this dissertation, I originate new methods and approaches to archaeological data that enable us to interpret humans’ long-term influences on fire regimes. I weave together human niche construction theory and ecological resilience, creating connections between archaeology, paleoecology, and fire ecology. Three, stand-alone studies illustrate the usefulness of these methods and theories for charting changes in land-use, fire-regimes, and vegetation communities during the Neolithic Transition (7600 - 3800 cal. BP) in eastern Spain. In the first study (Ch. II), I analyze archaeological survey data using Bayesian methods to extract land-use intensities from mixed surface assemblages from a case study in the Canal de Navarrés. The second study (Ch. III) builds on the archaeological data collected computational model of landscape fire, charcoal dispersion, and deposition to test how multiple models of natural and anthropogenic fire activity contributed to the formation a single sedimentary charcoal dataset from the Canal de Navarrés. Finally, the third study (Ch. IV) incorporates the modeling and data generated in the previous chapters into sampling and analysis of sedimentary charcoal data from alluvial contexts in three study areas throughout eastern Spain. Results indicate that anthropogenic fire played a significant role in the creation of agricultural landscapes during the Neolithic period, but sustained, low-intensity burning after the late Neolithic period maintained the human created niche for millennia beyond the arrival of agro-pastoral land-use. With global fire activity on the rise, it is vital to incorporate perspectives on the origins, development, and maintenance of human-fire relationships to effectively manage fire in today’s coupled social-ecological landscapes.
ContributorsSnitker, Grant (Author) / Barton, Michael (Thesis advisor) / Morehart, Christopher (Committee member) / Franklin, Janet (Committee member) / Arizona State University (Publisher)
Created2019
157222-Thumbnail Image.png
Description
This research investigates the biophysical and institutional mechanisms affecting the distribution of metals in the Sonoran Desert of Arizona. To date, a long-term, interdisciplinary perspective on metal pollution in the region has been lacking. To address this gap, I integrated approaches from environmental chemistry, historical geography, and institutional economics to

This research investigates the biophysical and institutional mechanisms affecting the distribution of metals in the Sonoran Desert of Arizona. To date, a long-term, interdisciplinary perspective on metal pollution in the region has been lacking. To address this gap, I integrated approaches from environmental chemistry, historical geography, and institutional economics to study the history of metal pollution in the desert. First, by analyzing the chemistry embodied in the sequentially-grown spines of long-lived cacti, I created a record of metal pollution that details biogeochemical trends in the desert since the 1980s. These data suggest that metal pollution is not simply a legacy of early industrialization. Instead, I found evidence of recent metal pollution in both the heart of the city and a remote, rural location. To understand how changing land uses may have contributed to this, I next explored the historical geography of industrialization in the desert. After identifying cities and mining districts as hot spots for airborne metals, I used a mixture of historical reports, maps, and memoirs to reconstruct the industrial history of these polluted landscapes. In the process, I identified three key transitions in the energy-metal nexus that drove the redistribution of metals from mineral deposits to urban communities. These transitions coincided with the Columbian exchange, the arrival of the railroads, and the economic restructuring that accompanied World War II. Finally, to determine how legal and political forces may be influencing the fate of metals, I studied the evolution of the rights and duties affecting metals in their various forms. This allowed me to track changes in the institutions regulating metals from the mining laws of the 19th century through their treatment as occupational and public health hazards in the 20th century. In the process, I show how Arizona’s environmental and resource institutions were often transformed by extra-territorial concerns. Ultimately, this created an institutional system that compartmentalizes metals and fails to appreciate their capacity to mobilize across legal and biophysical boundaries to accumulate in the environment. Long-term, interdisciplinary perspectives such as this are critical for untangling the complex web of elements and social relations transforming the modern world.
ContributorsHester, Cyrus M (Author) / Larson, Kelli L (Thesis advisor) / Laubichler, Manfred D (Thesis advisor) / MacFadyen, Joshua (Committee member) / Arizona State University (Publisher)
Created2019
153622-Thumbnail Image.png
Description
Dietary diversity is an important component of species’s ecology that often relates to species’s abundance and geographic distribution. Additionally, dietary diversity is involved in many hypotheses regarding the geographic distribution and evolutionary fate of fossil primates. However, in taxa such as primates with relatively generalized morphology and diets, a method

Dietary diversity is an important component of species’s ecology that often relates to species’s abundance and geographic distribution. Additionally, dietary diversity is involved in many hypotheses regarding the geographic distribution and evolutionary fate of fossil primates. However, in taxa such as primates with relatively generalized morphology and diets, a method for approximating dietary diversity in fossil species is lacking.

One method that has shown promise in approximating dietary diversity is dental microwear analyses. Dental microwear variance has been used to infer dietary variation in fossil species, but a strong link between variation in microwear and variation in diet is lacking. This dissertation presents data testing the hypotheses that species with greater variation in dental microwear textures have greater annual, seasonal, or monthly dietary diversity.

Dental microwear texture scans were collected from Phase II facets of first and second molars from 309 museum specimens of eight species of extant African Old World monkeys (Cercopithecidae; n = 9 to 74) with differing dietary diversity. Dietary diversity was calculated based on food category consumption frequency at study sites of wild populations. Variation in the individual microwear variables complexity (Asfc) and scale of maximum complexity (Smc) distinguished groups that were consistent with differences in annual dietary diversity, but other variables did not distinguish such groups. The overall variance in microwear variables for each species in this sample was also significantly correlated with the species’s annual dietary diversity. However, the overall variance in microwear variables was more strongly correlated with annual frequencies of fruit and foliage consumption. Although some variation due to seasonal and geographic differences among individuals was present, this variation was small in comparison to the variation among species. Finally, no association was found between short-term monthly dietary variation and variation in microwear textures.

These results suggest that greater variation in microwear textures is correlated with greater annual dietary diversity in Cercopithecidae, but that variation may be more closely related to the frequencies of fruit and foliage in the diet.
ContributorsShapiro, Amy Elissa (Author) / Reed, Kaye E (Thesis advisor) / Schwartz, Gary T (Committee member) / Ungar, Peter S. (Committee member) / Arizona State University (Publisher)
Created2015
154699-Thumbnail Image.png
Description
Unmanned aerial vehicles have received increased attention in the last decade due to their versatility, as well as the availability of inexpensive sensors (e.g. GPS, IMU) for their navigation and control. Multirotor vehicles, specifically quadrotors, have formed a fast growing field in robotics, with the range of applications spanning from

Unmanned aerial vehicles have received increased attention in the last decade due to their versatility, as well as the availability of inexpensive sensors (e.g. GPS, IMU) for their navigation and control. Multirotor vehicles, specifically quadrotors, have formed a fast growing field in robotics, with the range of applications spanning from surveil- lance and reconnaissance to agriculture and large area mapping. Although in most applications single quadrotors are used, there is an increasing interest in architectures controlling multiple quadrotors executing a collaborative task. This thesis introduces a new concept of control involving more than one quadrotors, according to which two quadrotors can be physically coupled in mid-flight. This concept equips the quadro- tors with new capabilities, e.g. increased payload or pursuit and capturing of other quadrotors. A comprehensive simulation of the approach is built to simulate coupled quadrotors. The dynamics and modeling of the coupled system is presented together with a discussion regarding the coupling mechanism, impact modeling and additional considerations that have been investigated. Simulation results are presented for cases of static coupling as well as enemy quadrotor pursuit and capture, together with an analysis of control methodology and gain tuning. Practical implementations are introduced as results show the feasibility of this design.
ContributorsLarsson, Daniel (Author) / Artemiadis, Panagiotis (Thesis advisor) / Marvi, Hamidreza (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2016
154026-Thumbnail Image.png
Description
There has been a vast increase in applications of Unmanned Aerial Vehicles (UAVs) in civilian domains. To operate in the civilian airspace, a UAV must be able to sense and avoid both static and moving obstacles for flight safety. While indoor and low-altitude environments are mainly occupied by static obstacles,

There has been a vast increase in applications of Unmanned Aerial Vehicles (UAVs) in civilian domains. To operate in the civilian airspace, a UAV must be able to sense and avoid both static and moving obstacles for flight safety. While indoor and low-altitude environments are mainly occupied by static obstacles, risks in space of higher altitude primarily come from moving obstacles such as other aircraft or flying vehicles in the airspace. Therefore, the ability to avoid moving obstacles becomes a necessity

for Unmanned Aerial Vehicles.

Towards enabling a UAV to autonomously sense and avoid moving obstacles, this thesis makes the following contributions. Initially, an image-based reactive motion planner is developed for a quadrotor to avoid a fast approaching obstacle. Furthermore, A Dubin’s curve based geometry method is developed as a global path planner for a fixed-wing UAV to avoid collisions with aircraft. The image-based method is unable to produce an optimal path and the geometry method uses a simplified UAV model. To compensate

these two disadvantages, a series of algorithms built upon the Closed-Loop Rapid Exploratory Random Tree are developed as global path planners to generate collision avoidance paths in real time. The algorithms are validated in Software-In-the-Loop (SITL) and Hardware-In-the-Loop (HIL) simulations using a fixed-wing UAV model and in real flight experiments using quadrotors. It is observed that the algorithm enables a UAV to avoid moving obstacles approaching to it with different directions and speeds.
ContributorsLin, Yucong (Author) / Saripalli, Srikanth (Thesis advisor) / Scowen, Paul (Committee member) / Fainekos, Georgios (Committee member) / Thangavelautham, Jekanthan (Committee member) / Youngbull, Cody (Committee member) / Arizona State University (Publisher)
Created2015
158266-Thumbnail Image.png
Description
Stable carbon isotope data for early Pliocene hominins Ardipithecus ramidus and Australopithecus anamensis show narrow, C3-dominated isotopic signatures. Conversely, mid-Pliocene Au. afarensis has a wider isotopic distribution and consumed both C3 and C4 plants, indicating a transition to a broader dietary niche by ~ 3.5 million years ago (Ma). Dietary

Stable carbon isotope data for early Pliocene hominins Ardipithecus ramidus and Australopithecus anamensis show narrow, C3-dominated isotopic signatures. Conversely, mid-Pliocene Au. afarensis has a wider isotopic distribution and consumed both C3 and C4 plants, indicating a transition to a broader dietary niche by ~ 3.5 million years ago (Ma). Dietary breadth is an important aspect of the modern human adaptive suite, but why hominins expanded their dietary niche ~ 3.5 Ma is poorly understood at present. Eastern Africa has produced a rich Pliocene record of hominin species and associated mammalian faunas that can be used to address this question. This dissertation hypothesizes that the shift in hominin dietary breadth was driven by a transition to more open and seasonal environments in which food resources were more patchily distributed both spatially and temporally. To this end, I use a multiproxy approach that combines hypsodonty, mesowear, faunal abundance, and stable isotope data for temporally well-constrained early and mid-Pliocene mammal assemblages (5.3-2.95 Ma) from Ethiopia, Kenya, and Tanzania to infer patterns of environmental change through time. Hypsodonty analyses revealed that early Pliocene sites had higher annual precipitation, lower precipitation seasonality, and lower temperature seasonality than mid-Pliocene sites. Mesowear analyses, however, did not show from attrition- to abrasion- dominated wear through time. Abundance data suggest that there was a trend towards aridity, as Tragelaphini (woodland antelope) decline while Alcelaphini (grassland antelope) increased in abundance through time. Carbon isotope data indicate that most taxa shifted to diets focusing on C4 grasses through time, which closely follows paleosol carbon isotope data documenting the expansion of grassland ecosystems in eastern Africa. Overall, the results suggest Ar. ramidus and Au. anamensis preferentially exploited habitats in which preferred food resources were likely available year-round, whereas Au. afarensis lived in more variable, seasonal environments in which preferred foods were available seasonally. Au. afarensis and K. platyops likely expanded their dietary niche in less stable environments, as reflected in their wider isotopic niche breadth.
ContributorsSeyoum, Chalachew Mesfin (Author) / Kimbel, William H. (Thesis advisor) / Reed, Kaye (Thesis advisor) / Campisano, Christopher (Committee member) / Alemseged, Zeresenay (Committee member) / Arizona State University (Publisher)
Created2020